Real-Time Workshop

For Use with Simulink®

Modeling
—1

Simulation
—

Implementation
—

a‘\The MathWorks
User’s Guide

Version 5

X CIB)

How to Contact The MathWorks:

www . mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Workshop User’s Guide
© COPYRIGHT 1994-2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: May 1994 First printing Version 1
January 1998 Second printing Version 2.1
January 1999 Third printing Version 3.11 (Release 11)

September 2000 Fourth printing Version 4 (Release 12)

June 2001 Online only Revised for Version 4.1 (Release 12.1)
October 2001 Online only Revised for Version 4.2 (Release 13)
July 2002 Online only Revised for Version 5.0 (Release 13)
October 2004 Online only Revised for Version 5.2 (Release 13SP2)

About This Guide

Understanding Real-Time Workshop

1]

Product Overview, 1-2
Some Real-Time Workshop Capabilities 1-3
Software Design with Real-Time Workshop 1-3

The Rapid Prototyping Process 1-5
Key Aspects of Rapid Prototyping 1-5
Rapid Prototyping for Digital Signal Processing 1-8
Rapid Prototyping for Control Systems 1-9

Open Architecture of Real-Time Workshop 1-11

WheretoFindHelp 1-14
How Do l.. 1-14

Code Generation and the Build Process

2

The Real-Time Workshop User Interface 2-2
Using the Real-Time Workshop Pane 2-2
Target Configuration Options 2-5
General Code Generation Options 2-7
General Code Generation Options (cont.) 2-12
General Code Appearance Options 2-13

Target-Specific Code Generation Options 2-16

Contents

TLC Debugging Options i, 2-18

Real-Time Workshop Submenu 2-20
Simulation Parameters and Code Generation 2-21
Solver Optionsiiiiiiiii ... 2-21
Workspace I/0 Options and Data Logging 2-22
Diagnostics Pane Options 2-26
Advanced Pane Options 2-27
Tracing Generated Code Back to Your
Simulink Model 2-34
Other Interactions Between Simulink
and Real-Time Workshop 2-36
Selecting a Target Configuration 2-41
The System Target File Browser 2-41
Available Targets i 2-42
Making an Executable 2-48
Generated Source Files 2-48
Compilation and Linking 2-50
Choosing and Configuring Your Compiler 2-52
Template Makefiles and Make Options 2-55
Compiler-Specific Template Makefiles 2-55
Configuring the Generated Code viaTLC 2-60
Target Language Compiler Variables and Options 2-60

Generated Code Formats

3|

Introduction 3-2
Choosing a Code Format for Your Application 3-3
Real-Time Code Format 3-6

ii Contents

Unsupported Blocks 3-6

4 |

System Target Files 3-6
Template Makefiles 3-6
Real-Time malloc Code Format 3-8
Unsupported Blocks 3-8
System Target Files 3-8
Template Makefiles 3-9
S-Function Code Format 3-10
Embedded C Code Format 3-11
Building Subsystems

Nonvirtual Subsystem Code Generation 4-2
Nonvirtual Subsystem Code Generation Options 4-2
Modularity of Subsystem Code 4-13
Code Reuse Diagnostics, 4-13
Generating Code and Executables from Subsystems 4-15

Working with Data Structures

5]

Parameters: Storage, Interfacing, and Tuning 5-2
Storage of Nontunable Parameters 5-2
Tunable Parameter Storage 5-4
Storage Classes of Tunable Parameters 5-5
Using the Model Parameter Configuration Dialog 5-8
Tunable Expressions i, 5-12
Tunability of Linear Block Parameters 5-14
Parameter Configuration Quick Reference Diagram 5-16

iii

iv

Contents

Signal Storage, Optimization, and Interfacing 5-17

Signal Storage Concepts, 5-17
Signals with Auto StorageClass 5-20
Declaring Test Points 5-24
Interfacing Signals to External Code 5-25
Symbolic Naming Conventions for Signals
in Generated Code 0., 5-27
Summary of Signal Storage Class Options 5-29
C API for Parameter Tuning and Signal Monitoring 5-30
Target Language Compiler API for Parameter
Tuning and Signal Monitoring 5-30
Parameter Tuning via MATLAB Commands 5-30
Simulink Data Objects and Code Generation 5-32
Parameter Objects i, 5-34
Parameter Object Configuration Quick
Reference Diagram 5-38
Signal Objects i 5-39
Signal Object Configuration Quick
Reference Diagram, 5-42
Resolving Conflicts in Configuration of Parameter
and Signal Objects 5-43
Customizing Code for Parameter and Signal Objects 5-47
Using Objects to Export ASAP2 Files 5-47
Block States: Storing and Interfacing 5-48
Storage of Block States 5-48
Block State Storage Classes 5-49
Using the State Properties Dialog Box to Interface
States to External Code 5-50
Symbolic Names for Block States 5-51
Block States and Simulink Signal Objects 5-53
Summary of State Storage Class Options 5-55
Storage Classes for Data Store Memory Blocks 5-56
Data Store Memory and Simulink Signal Objects 5-58

External Mode

6

Introduction 6-2
Using the External Mode User Interface 6-3
External Mode Related Menu and Toolbar Items 6-3
External Mode Control Panel 6-8
Connecting, Starting, and Stopping 6-9
Target Interfacing 6-10
External Signal Uploading and Triggering 6-11
Data Archiving 6-15
Parameter Downloading 6-17
External Mode Compatible Blocks and Subsystems 6-19
Compatible Blocks 6-19
Signal Viewing Subsystems 6-20
External Mode Communications Overview 6-23
The Download Mechanism 6-23
Inlined and Tunable Parameters 6-24
The TCP/IP Implementation 6-26
Using the TCP/IP Implementation 6-26
The External Interface MEX-File 6-28
External Mode Compatible Targets 6-29
Running the External Program 6-29
Implementing an External Mode Protocol Layer 6-32
Limitations of External Mode 6-33
Error Conditions i, 6-33
Program Architecture

7

Introduction e 7-2

Model Execution 7-4

Program Timing 7-12
Program Execution 7-13
External Mode Communication 7-13
Data Logging In Singletasking
and Multitasking Model Execution 7-13
Rapid Prototyping and Embedded
Model Execution Differences 7-14
Rapid Prototyping Model Functions 7-15
Embedded Model Functions 7-21
Rapid Prototyping Program Framework 7-23
Rapid Prototyping Program Architecture 7-24
Rapid Prototyping System-Dependent Components 7-25
Rapid Prototyping System-Independent Components 7-26
Rapid Prototyping Application Components 7-29
Embedded Program Framework 7-34

Models with Multiple Sample Rates

8|

Introduction 8-2
Singletasking vs. Multitasking Environments 8-3
Executing Multitasking Models 8-5
Multitasking and Pseudomultitasking 8-5
Building the Program for Multitasking Execution 8-8
Singletasking 8-8
Building the Program for Singletasking Execution 8-9
Model Execution 8-9
Simulating Models with Simulink 8-9
Executing Modelsin Real Time 8-10
Singletasking vs. Multitasking Operation 8-11
Sample Rate Transitions 8-12
Data Transfer Problems 8-13

vi Contents

Rate Transition Block Options 8-14

Faster to Slower Transitions in Simulink 8-16
Faster to Slower Transitions in Real Time 8-16
Slower to Faster Transitions in Simulink 8-18
Slower to Faster Transitions in Real Time 8-19

Singletasking and Multitasking

Execution of a Model: an Example 8-22
Singletasking Execution 8-23
Multitasking Execution 8-25

Optimizing the Model for Code Generation

9|

General Modeling Techniques 9-2
ExpressionFolding 9-3
Expression Folding Example 9-3
Using and Configuring Expression Folding 9-5
Supporting Expression Folding in S-Functions 9-10
Categories of Output Expressions 9-11
Acceptance or Denial of Requests for
Input Expressions, 9-16
Utilizing Expression Folding in Your TLC Block
Implementation 9-19
Conditional Branch Execution 9-25
Block Diagram Performance Tuning 9-26
Look-Up Tables and Polynomials 9-26
Accumulators 9-36
Useof DataTypesc.o ... 9-38
Stateflow Optimizations 9-43
Simulation Parameters 9-44

vii

viil Contents

Compiler Options, 9-46

10

Introduction 10-2
Intellectual Property Protection 10-2
Creating an S-Function Block from a Subsystem 10-3
Sample Time Propagation in Generated S-Functions 10-8
Choice of Solver Type 10-8
Tunable Parameters in Generated S-Functions 10-9
Automated S-Function Generation 10-11
Restrictions 10-15
Limitations on Use of Goto and From Blocks 10-15
Other Restrictions 10-16
UnsupportedBlocks 10-17
System Target File and Template Makefiles 10-18
System Target File 10-18
Template Makefiles 10-18

Real-Time Workshop Rapid Simulation Target

11

Introduction 11-2
Licensing Protocols for Simulink Solvers in Executables 11-3
Building for the Rapid Simulation Target 11-5
Running a Rapid Simulation 11-6

Simulation Performance 11-15
Batch and Monte Carlo Simulations 11-15
Limitations 11-16

Targeting Tornado for Real-Time Applications

12

The Tornado Environment 12-2
Confirming Your Tornado Setup Is Operational 12-2
VxWorks Library 12-3

Run-Time Architecture Overview 12-5
Parameter Tuning and Monitoring 12-5

Implementation Overview 12-11
Adding Device Driver Blocks 12-13
Configuring the Template Makefile 12-13
Tool Locations0 ... 12-14
Building the Program 12-14
Downloading and Running the Executable
Interactively 12-18

13|

Introduction 13-2
Interrupt Handling 13-3
Interrupt Control Block 13-3
Task Synchronization Block 13-10
Asynchronous Rate Transition Block 13-14
Unprotected Asynchronous Rate Transition Block 13-16
Creating a Customized Asynchronous Library 13-19

ix

X

Contents

Targeting Real-Time Systems

14

Introduction 14-2
Components of a Custom Target Configuration 14-3
Code Componentsuuiiiiiniinieennnn.. 14-3
User-Written Run-Time Interface Code 14-4
Run-Time Interface for Rapid Prototyping 14-5
Run-Time Interface for Embedded Targets 14-5
Control Files i 14-6
Tutorial: Creating a Custom Target Configuration 14-9
Customizing the Build Process 14-16
System Target File Structure 14-16
Adding a Custom Target to the System Target
File Browsert 14-27
Template Makefiles 14-28
Creating Device Drivers 14-39
Inlined and Noninlined Drivers 14-40
Device Driver Requirements and Limitations 14-42
Parameterizing Your Driver 14-43
Writing a Noninlined S-Function Device Driver 14-44
Writing an Inlined S-Function Device Driver 14-53
Building the MEX-File and the Driver Block 14-59
Source Code for Inlined ADC Driver 14-60
Interfacing Parameters and Signals 14-70
Signal Monitoring via Block OQutputs 14-70
C API for Parameter Tuning 14-77
Target Language Compiler API for
Signals and Parameters 14-92
Creating an External Mode Communication Channel ... 14-94
The Design of External Mode 14-94
External Mode Communications Overview 14-95
External Mode Source Files 14-97
Guidelines for Implementing the Transport Layer 14-100

Combining Multiple Models 14-103

DSP Processor Support 14-107
For DSPBlockset Users 14-107
Glossary

Al

Blocks That Depend on Absolute Time

B

Targeting DOS for Real-Time Applications

C

DOSTargetBasics C-2
DOS Device Drivers Library C-2
Implementation Overview C4
System Configuration C-5
Sample Rate Limits C-7
Device DriverBlocks C-10
Device Driver Block Library C-10
Configuring Device Driver Blocks C-11
Adding Device Driver Blocks to the Model C-17
Building the Program C-18
Running the Program C-19

xi

xii

Contents

The Real-Time Workshop Development Process

D

Introduction D-2
A Next-Generation Development Tool D-3
Key Features D-4
Benefitso D-7
How MathWorks Tools Streamline Development D-10
CodeFormats D-16
Target Environmentsc........ D-19
Code Generation Optimizations D-25
An Open and Extensible Environment D-30

About This Guide

About This Guide

Xiv

If you are just beginning to use Real-Time Workshop, please see the overviews,
explanations and tutorials in either the online or printed version of the Getting
Started Guide to orient yourself. The following material picks up from there,
gradually introducing additional details about code generation, targeting,
optimizations, and other useful topics:

Understanding Real-Time Workshop describes concepts and terminology of
the Real-Time Workshop. It describes the rapid prototyping process that the
open architecture of the Real-Time Workshop facilitates, and points to
discussions of basic real-time development tasks elsewhere in this document.

Code Generation and the Build Process describes the automatic program
building process in detail. It discusses all code generation options controlled by
the Real-Time Workshop’s graphical user interface. Topics include data
logging, inlining and tuning parameters, and template makefiles. The chapter
also summarizes available target configurations.

Generated Code Formats compares and contrasts targets and their
associated code formats. This include the real-time, real-time malloc,
embedded C, and S-function code formats.

Building Subsystems describes how to control code generation for
conditionally executed and atomic subsystems.

Working with Data Structures teaches you how to generate storage
declarations to import and export parameters and block states, configure
storage for signals and data objects, and utilize custom storage classes.

External Mode contains information about external mode, a simulation
environment that supports parameter tuning, signal monitoring, and data

logging.

Program Architecture discusses the architecture of programs generated by
the Real-Time Workshop, and the run-time interface.

Models with Multiple Sample Rates describes how to handle multirate
systems.

Optimizing the Model for Code Generation discusses techniques for
optimizing your generated programs.

The S-Function Target explains how to generate S-Function blocks from
models and subsystems. This enables you to encapsulate models and
subsystems and protect your designs by distributing only binaries.

Real-Time Workshop Rapid Simulation Target discusses the rapid
simulation target (RSIM), which executes your model in nonreal-time on your
host computer. Use this feature to generate fast, stand-alone simulations that
allow batch parameter tuning and the loading of new simulation data (signals)
from MATLAB MAT-files without needing to recompile your model.

Targeting Tornado for Real-Time Applications contains information that is
specific to developing programs that target Tornado, and signal monitoring
using StethoScope.

Asynchronous Support describes the Interrupt Template library, which allow
you to model synchronous/asynchronous event handling.

Targeting Real-Time Systems discusses advanced techniques for developing
programs for custom targets, including device driver blocks, customizing
system target files and template makefiles, combining multiple models into a
single executable, and APIs for external mode communication, signal
monitoring, and parameter tuning.

Appendix A is a glossary that contains definitions of terminology associated
with the Real-Time Workshop and real-time software development.

Appendix B lists blocks whose use is restricted due to dependency on absolute
time.

Appendix C details the DOS target (now obsolete) and provides useful
guidance for working with device drivers.

Appendix D provides an overview that describes how using the Real-Time
Workshop development environment can dramatically accelerate the design,

refinement and deployment of real-time systems on a variety of target systems.

XV

About This Guide

xvi

Understanding Real-Time
Workshop

We begin by summarizing what Real-Time Workshop can do and how you can use it to accelerate
development of high-quality real-time software. This is followed by an overview of the software
components that Real-Time Workshop calls upon to generate source code from a Simulink model, and
shows how they work together in an extensible way. Information resources are provided to help you
understand where to look to answer some commonly asked questions.

Product Overview (p. 1-2) Real-Time Workshop at a glance

The Rapid Prototyping Process (p. 1-5) Key advantages of rapid prototyping, along with
descriptions of its application in two domains

Open Architecture of Real-Time Modules and files involved in code generation that you
Workshop (p. 1-11) can customize for your own targets and applications
Where to Find Help (p. 1-14) Pointers to both basic descriptions and advanced

information on specific topics

1 Understanding Real-Time Workshop

Product Overview

Real-Time Workshop® generates optimized, portable, and customizable ANSI
C code from Simulink models to create stand-alone implementations of models
that operate in real-time and non-real-time in a variety of target environments.
Generated code can run on PC hardware, DSPs, microcontrollers on bare-board
environments, and with commercial or proprietary real-time operating
systems (RTOS). Real-Time Workshop lets you speed up simulations, build in
intellectual property protection, and operate across a wide variety of real-time
rapid prototyping targets. Figure 1-1 illustrates the role of Real-Time
Workshop (shaded elements) in the software design process.

MATLAB

and .]
Toolboxes Simulink,
Design Stateflow, and Blocksets
and Modeling and simulation
Analysis @apld 51mu1at10n>
External Mode Simulink Code Customer defined
Monitoring and Generator Monitoring and
Real-Time parameter tuning Generates C parameter tuning
Workshop Make
components process
Rapid Prototyping Target Production
Real-time test environment Target

Early rapid prototyping iterations Final production
iteration

Figure 1-1: Software Design and Deployment Using MATLAB and Simulink

1-2

Product Overview

Some Real-Time Workshop Capabilities

With Real-Time Workshop, you can quickly generate code for discrete-time,
continuous-time (fixed-step), and hybrid systems, as well as for finite state
machines modeled in Stateflow® using the optional Stateflow Coder. The
optional Real-Time Workshop Embedded Coder works with Real-Time
Workshop to generate efficient, embeddable source code.

Using integrated makefile-based targeting support, Real-Time Workshop
builds programs that can help speed up your simulations, provide intellectual
property protection, and run on a wide variety of real-time rapid prototyping or
production targets. Simulink's external mode run-time monitor works
seamlessly with real-time targets, providing an elegant signal monitoring and
parameter tuning interface. Real-Time Workshop supports continuous-time,
discrete-time and hybrid systems, including conditionally executed and atomic
systems. Real-Time Workshop accelerates your development cycle, producing
higher quality results in less time.

Real-Time Workshop is a key link in the set of system design tools provided by
The MathWorks, providing a real-time development environment — a direct
path from system design to hardware implementation. You can streamline
application development and reduce costs with Real-Time Workshop by testing
design iterations with real-time hardware. Real-Time Workshop supports the
execution of dynamic system models on hardware by automatically converting
models to code and providing model-based debugging support. It is well suited
for accelerating simulations, rapid prototyping, turnkey solutions, and
production embedded real-time applications.

Software Design with Real-Time Workshop

A typical product cycle using the MathWorks toolset starts with modeling in
Simulink, followed by an analysis of the simulations in MATLAB. During the
simulation process, you use the rapid simulation features of Real-Time
Workshop to speed up your simulations.

After you are satisfied with the simulation results, you use Real-Time
Workshop in conjunction with a rapid prototyping target, such as xPC Target.
The rapid prototyping target is connected to your physical system. You test and
observe your system, using your Simulink model as the interface to your
physical target. Once your simulation is functioning properly, you use
Real-Time Workshop to transform your model to C code. An extensible make
process and download procedure creates an executable for your model and

1-3

1 Understanding Real-Time Workshop

14

places it on the target system. Finally, using external mode, you can monitor
and tune parameters in real-time as your model executes on the target
environment.

There are two broad classes of targets: rapid prototyping targets and the
embedded target. Code generated for the rapid prototyping targets supports
increased monitoring and tuning capabilities. Code generated for embedded
targets is highly optimized and suitable for deployment in production systems,
and can include application-specific entry points to monitor signals and tune
parameters.

To support embedded targets, The MathWorks distributes Real-Time
Workshop Embedded Coder as a separate product. Embedded Coder is an
extension of Real-Time Workshop designed to generate C code for embedded
discrete-time systems, where efficiency, configurability, readability, and
traceability of the generated code are extremely important. Real-Time
Workshop Embedded Coder enhances Real-Time Workshop code generation
technology to generate embeddable ANSI C code that compares favorably with
hand-optimized code in terms of performance, ROM code size, RAM
requirements, and readability. The Real-Time Workshop Embedded Coder
documentation contains information about optimization specifically for
embedded code.

For a more complete general overview of the key features, capabilities, and
benefits of Real-Time Workshop, please see Appendix D, “The Real-Time
Workshop Development Process.”

The Rapid Prototyping Process

The Rapid Prototyping Process

Real Time Workshop supports rapid prototyping, an application development
process that allows you to

¢ Conceptualize solutions graphically in a block diagram modeling
environment

¢ Evaluate system performance early on — before laying out hardware, coding
production software, or committing to a fixed design

® Refine your design by rapid iteration between algorithm design and
prototyping

¢ Tune parameters while your real-time model runs, using Simulink in
external mode as a graphical front end

Key Aspects of Rapid Prototyping

The figure below contrasts the rapid prototyping development process with the
traditional development process.

Traditional Approach Rapid Prototyping Process
=
2 g
® Algorithm -g Algorithm design
E) development g [and prototyping
L]
_ =
5 y e
s -
= Hardware and &=

software design

Y

Implementation of Implementation of
production system production system

Figure 1-2: Traditional vs. Rapid Prototyping Development Processes

1-5

1 Understanding Real-Time Workshop

The traditional approach to real-time design and implementation typically
involves multiple teams of engineers, including an algorithm design team,
software design team, hardware design team, and an implementation team.
When the algorithm design team has completed its specifications, the software
design team implements the algorithm in a simulation environment and then
specifies the hardware requirements. The hardware design team then creates
the production hardware. Finally, the implementation team integrates the
hardware into the larger overall system.

This traditional development process takes so much time because algorithm
designers often do not have access to the hardware that is actually deployed.
The rapid prototyping process combines the algorithm, software, and hardware
design phases, eliminating potential bottlenecks by allowing engineers to see
results and rapidly iterate solutions before building expensive hardware.

Automating Programming

Automatic program building allows you to make design changes directly to the
block diagram, puttting algorithm development (including coding, compiling,

linking, and downloading to target hardware) under control of a single process:

® Design a Model in Simulink
You begin the rapid prototyping process with the development of a model in
Simulink. In control engineering, you model plant dynamics and other
dynamic components that constitute a controller and/or an observer.

¢ Simulate your Model in Simulink
You use MATLAB, Simulink, and toolboxes to aid in the development of
algorithms and analysis of the results. If the results are not satisfactory, you
can iterate the modeling and analysis process until results are acceptable.

® Generate Source Code with Real-Time Workshop

Once simluation results are acceptable, you generate downloadable C code
that implements the appropriate portions of the model. You can use
Simulink in external mode to tune parameters and further refine your
model, quickly iterating through solutions.

¢ Implement a Production Prototype
At this stage, the rapid prototyping process is complete. You can begin the

final implementation for production with confidence that the underlying
algorithms work properly in your real-time production system.

The Rapid Prototyping Process

The next diagram illustrates the flow of this process.

Algorithm Design and Prototyping

Identify system Build/edit model in|
and/ or algorithm ——» gimulink <
requirements +

Run simulations and analyze results
using Simulink and MATLAB

Invoke the Real-Time Workshop build procedure,
download and run on your target hardware

Y

Analyze results and tune the model
using external mode

Implement production system

Figure 1-3: The Rapid Prototyping Development Process

1-7

1 Understanding Real-Time Workshop

1-8

Highly productive development cycles are possible due to the integration of
Real-Time Workshop, MATLAB, and Simulink. Each component adds value to
your application design process:

e MATLAB: Provides design, analysis, and data visualization tools.
® Simulink: Provides system modeling, simulation, and validation.

® Real-Time Workshop: Generates C code from Simulink model; provides
framework for running generated code in real-time, tuning parameters, and
viewing real-time data.

Rapid Prototyping for Digital Signal Processing

The first step in the rapid prototyping process for digital signal processing is to
consider the kind and quality of the data to be worked on, and to relate it to the
system requirements. Typically this includes examining the signal-to-noise
ratio, distortion, and other characteristics of the incoming signal, and relating
them to algorithm and design choices.

System Simulation and Algorithm Design

In the rapid prototyping process, the block diagram plays two roles in
algorithm development. The block diagram helps to identify processing
bottlenecks, and to optimize the algorithm or system architecture. The block
diagram also functions as a high-level system description. That is, the diagram
provides a hierarchical framework for evaluating the behavior and accuracy of
alternative algorithms under a range of operating conditions.

Analyzing Results, Tuning Parameters, and Monitoring Signals

After creating an algorithm (or a set of candidate algorithms), the next stage is
to consider architectural and implementation issues. These include complexity,
speed, and accuracy. In a conventional development environment, this would
mean running the algorithm and recoding it in C or in a hardware design and
simulation package.

Using Simulink external mode you can change parameters while your
processing algorithms execute in real time on the target hardware. After
building the executable and downloading it to your hardware, you tune
(modify) block parameters in Simulink, which downloads the new values to the
hardware. You can monitor the effects of your parameter changes by simply
connecting Scope blocks to signals that you want to observe.

The Rapid Prototyping Process

Note Opening a dialog box for a source block causes Simulink to pause.
While Simulink is paused, you can edit the parameter values. You must close
the dialog box to have the changes take effect and allow Simulink to continue.

Rapid Prototyping for Control Systems

Rapid prototyping for control systems is similar to digital signal processing,
with one major difference. In control systems design, you must model your
plant prior to developing algorithms in order to simulate closed-loop
performance. Once your plant model is sufficiently accurate, the rapid
prototyping process for control system design continues in much the same
manner as digital signal processing design.

Rapid prototyping begins with developing block diagram plant models of
sufficient fidelity for preliminary system design and simulation. Once
simulations indicate acceptable system performance levels, the controller block
diagram is separated from the plant model and I/O device driver blocks are
attached to it. Automatic code generation immediately converts the entire
system to real-time executable code, which can be automatically loaded onto
target hardware.

Modeling Systems in Simulink

The first step in the design process is development of a plant model. The
Simulink collection of linear and nonlinear components helps you to build
models involving plant, sensor, and actuator dynamics. Because Simulink is
customizable, you can further simplify modeling by creating custom blocks and
block libraries from continuous- and discrete-time components.

Using the System Identification Toolbox, you can analyze test data to develop
an empirical plant model; or you can use the Symbolic Math Toolbox to
translate the equations of the plant dynamics into state-variable form.

Analyzing Simulation Results

You can use MATLAB and Simulink to analyze the results produced from a
model developed in the first step of the rapid prototyping process. At this stage,
you can design and add a controller to your plant.

1-9

1 Understanding Real-Time Workshop

1-10

Deriving and Analyzing Algorithms

From the block diagrams developed during the modeling stage, you can extract
state-space models through linearization techniques. These matrices can be
used in control system design. You can use the following toolboxes to facilitate
control system design, and work with the matrices that you derived:

® Control System Toolbox

¢ LMI Control Toolbox

® Model Predictive Control Toolbox

® Robust Control Toolbox

¢ System Identification Toolbox

® SimMechanics

Once you have your controller designed, you can create a closed-loop system by

connecting it to the Simulink plant model. Closed-loop simulations allow you
to determine how well the initial design meets performance requirements.

Once you have a satisfactory model, it is a simple matter to generate C code
directly from the Simulink block diagram, compile it for the target processor,
and link it with supplied or user-written application modules.

Analyzing Results, Tuning Parameters, and Monitoring Signals

You can load output data from your program into MATLAB for analysis, or
display the data with third party monitoring tools. You can easily make design
changes to the Simulink model and then regenerate the C code.

Open Architecture of Real-Time Workshop

Open Architecture of Real-Time Workshop

Real-Time Workshop is an open system designed for use with a wide variety of
operating environments and hardware types. Figure 1-4 shows how you can
extend key elements of Real-Time Workshop.

You can configure the Real-Time Workshop program generation process to
your own needs by modifying the following components:

¢ Simulink and the model file (model .md1l)

Simulink provides a very high-level language (VHLL) development
environment. The language elements are blocks and subsystems that
visually embody your algorithms. You can think of Real-Time Workshop as
a compiler that processes a VHLL source program (model .mdl), and emits
code suitable for a traditional high-level language (HLL) compiler.

S-functions written in C let you extend the Simulink VHLL by adding new
general purpose blocks, or incorporating legacy code into a block.

¢ The intermediate model description (model.rtw)

The initial stage of the code generation process is to analyze the source
model. The resultant description file contains a hierarchical structure of
records describing systems and blocks and their connections.

The S-function API includes a special function, md1RTW, that lets you
customize the code generation process by inserting parameter data from
your own blocks into the model.rtw file.

® The Target Language Compiler (TLC) program

The Target Language Compiler interprets a program that reads the
intermediate model description and generates code that implements the
model as a program.

You can customize the elements of the TLC program in two ways. First, you
can implement your own system target file, which controls overall code
generation parameters. Second, you can implement block target files, which
control how code is generated from individual blocks such as your own
S-function blocks.

1-11

1 Understanding Real-Time Workshop

1-12

MATLAB = > Simulink 14— C code S-functions

model ..mdl

Real-Time Workshop

y

system.tmf ‘+ Real-Time Workshop build
model .rtw
gi:ﬁglgra(n'ﬁﬁlg)gi)rogram' Target
’ Language
e System target file Compiler
¢ Block target files
i ; model.c
¢ Function library model h
model_private.h
Run-time interface) make | model.mk
support files
<
model .exe

Download to target hardware

\

Start execution using Simulink external mode

Figure 1-4: Real-Time Workshop Architecture

Open Architecture of Real-Time Workshop

® Source code generated from the model; for descriptions of these files, see
“Summary of Files Created by the Build Procedure” in the Real-Time
Workshop Getting Started Guide.

There are several ways to customize generated code, or interface it to custom
code:

= Exported entry points let you interface your hand-written code to the
generated code. This makes it possible to develop your own timing and
execution engine, or to combine code generated from several models into a
single executable.

= You can automatically make signals, parameters, and other data
structures within generated code visible to your own code, facilitating
parameter tuning and signal monitoring.

= Prepare or modify Target Language Compiler script files to customize the
transformation of Simulink blocks into source code. See the Target
Language Compiler Reference Guide for further details.

® Run-time interface support files

The run-time interface consists of code interfacing to the generated model
code. You can create a custom set of run-time interface files, including:

= A harness (main) program
= Code to implement a custom external mode communication protocol

= Code that interfaces to parameters and signals defined in the generated
code

= Timer and other interrupt service routines
= Hardware I/O drivers
¢ The template makefile and model .mk

A makefile, model .mk, controls the compilation and linking of generated
code. Real-Time Workshop generates model .mk from a template makefile
during the code generation and build process. You can create a custom
template makefile to control compiler options and other variables of the make
process.

All of these components contribute to the process of transforming a Simulink
model into an executable program. The topics in the next section point you to
documentation describing each of them.

1-13

1 Understanding Real-Time Workshop

1-14

Where to Find Help

Documentation for Real-Time Workshop and related products from The
MathWorks covers many topics—some in considerable depth—and includes
many examples of use. Some of the major topics covered are summarized below,
enabling you to locate directly what you need to proceed.

If you are a less experienced user, you will benefit from reading the Getting
Started guide, which introduces the product and describes its capabilities,
applications, benefits, and general usage. Inside that guide are tutorials that
provide immediate hands-on experience to get you familiar with the look, feel,
and capabilities of Real-Time Workshop. That guide also discusses

¢ The role of Real-Time Workshop in your development cycle
¢ Basic real-time system concepts and terms

® General and platform-specific installation instructions

® Related product descriptions

¢ Simulink demos that illustrate code generation

How Do ...

If you need specific details about how to use Real-Time Workshop, scan the
topics and descriptions below to locate documentation relevant to your
development tasks and interests. You can also search the index to find
information not included in this list.

Operate the Real-Time Workshop User Interface

You control most aspects of code generation through the Real-Time Workshop
tab of the Simulation Parameters dialog, and the dialogs descending from it.
See “The Real-Time Workshop User Interface” on page 2-2 for full descriptions
of the options at your disposal.

Select Targets and Customize Compilation

Setting up targets for code generation is simple with the Target File Browser,
described in “Selecting a Target Configuration” on page 2-41. Look there also
for information on configuring compilers (“Choosing and Configuring Your
Compiler” on page 2-52) and modifying makefiles (“Template Makefiles and
Make Options” on page 2-55). For details on working with specific targets, see
“The S-Function Target” on page 10-1, “Real-Time Workshop Rapid Simulation

Where to Find Help

Target” on page 11-1, “Targeting Tornado for Real-Time Applications” on
page 12-1, Appendix C, “Targeting DOS for Real-Time Applications,” and the
Real-Time Workshop Embedded Coder documentation.

Generate Single- and Multitasking Code

Real-Time Workshop fully supports singletasking and multitasking code
generation. See See “Program Architecture” on page 7-1 and See “Models with
Multiple Sample Rates” on page 8-1 for a complete description.

Customize Generated Code
Real-Time Workshop supports customization of the generated code.

The principle approach to customizing generated code is to modify Target
Language Compiler (TLC) files. The Target Language Compiler is an
interpreted language that translates Simulink models into C code. Using the
Target Language Compiler, you can direct the code generation process.

There are two TLC files, hookslib.tlc and cachelib.tlc, that contain
functions you can use to customize Real-Time Workshop generated code. See
the Target Language Compiler documentation for details on these TLC files.
See also the source code, located in matlabroot/rtw/c/tlc/lib/cachelib.tlc
and matlabroot/rtw/c/tlc/mw/hookslib.tlc.

Optimize Generated Code

The default code generation settings are generic for flexible rapid prototyping
systems. The penalty for this flexibility is code that is less than optimal. There
are several optimization techniques that you can use to minimize the source
code size and memory usage once you have a model that meets your
requirements.

See “Code Generation and the Build Process” on page 2—1 and “Optimizing the
Model for Code Generation” on page 9-1 for details on code optimization
techniques available for all target configurations.

The Real-Time Workshop Embedded Coder documentation contains

information about optimization specifically for embedded code.

Make Subsystem Code Reuseable

If your models contain multiple references to the same atomic subsystem, you
can ask Real-Time Workshop to generate a single reentrant function to

1-15

1 Understanding Real-Time Workshop

1-16

represent the subsystem, rather than inlining it or generating multiple
functions that all do the same thing. “Building Subsystems” on page 4-1 tells
how to do this, and describes model characteristics that can limit or prevent
subsystem reuse.

Validate Generated Code

Using Real-Time Workshop data logging features, you can create an executable
that runs on your workstation and creates a data file. You can then compare
the results of your program with the results of running an equivalent Simulink
simulation.

For more information on how to validate Real-Time Workshop generated code,
see “Workspace I/0 Options and Data Logging” on page 2-22. See also “Tutorial
2: Data Logging” on page 3-15 and “Tutorial 3: Code Validation” on page 3-19
of the Real-Time Workshop Getting Started Guide.

Incorporate Generated Code into Larger Systems

If your Real-Time Workshop generated code is intended to function within an
existing code base (for example, if you want to use the generated code as a
plug-in function), you should use Real-Time Workshop Embedded Coder. The
Real-Time Workshop Embedded Coder documentation describes the entry
points and header files you will need to interface your code to Real-Time
Workshop Embedded Coder generated code.

Incorporate Existing Code into Generated Code

To interface your hand-written code with Real-Time Workshop generated code,
you can use an S-function wrapper. See the Simulink Writing S-Functions
documentation and the Target Language Compiler documentation for more
information.

Create and Communicate with Device Drivers

S-functions provide a flexible method for communicating with device drivers.
See “Targeting Real-Time Systems” on page 14-1 for a description of how to
build device drivers. Also, for a complete discussion of S-functions, see the
Simulink Writing S-Functions documentation.

Trace Code back to Blocks

Real-Time Workshop includes special tags throughout the generated code that
make it easy to trace generated code back to your Simulink model. See “Tracing

Where to Find Help

Generated Code Back to Your Simulink Model” on page 2-34 of the Getting
Started Guide for more information about this feature.

Automate Builds

Using Real-Time Workshop, you can generate code with the push of a button.
The automatic build procedure, initiated by a single mouse click, generates
code, a makefile, and optionally compiles (or cross-compiles) and downloads a
program. See “Automatic Program Building” on page 2-2 of the Getting Started
guide for an overview, and “Code Generation and the Build Process” on

page 2-1 for complete details.

Tune Parameters During Execution

Parameter tuning enables you to change block parameters while a generated
program runs, thus avoiding recompiling the generated code. Real-Time
Workshop supports parameter tuning in four different environments:

¢ External mode: You can tune parameters from Simulink while running the
generated code on a target processor. See “External Mode” on page 6-1 for
information on this mode.

¢ External C application program interface (API): You can write your own C
API interface for parameter tuning using support files provided by The
MathWorks. See “Targeting Real-Time Systems” on page 14-1 for more
information.

¢ Rapid simulation: You can use the Rapid Simulation Target (rsim) in batch
mode to provide fast simulations for performing parametric studies.
Although this is not an application of parameter tuning, it is nevertheless a
useful way to evaluate a model. This mode is also useful for Monte Carlo
simulation. See “Real-Time Workshop Rapid Simulation Target” on
page 11-1 for further information.

¢ Simulink: Prior to generating real-time code, you can tune parameters in
your Simulink model.

See also “Interface with Signals and Parameters” on page 1-18.

Monitor Signals and Log Data
There are several ways to monitor signals and data in Real-Time Workshop:

1-17

1 Understanding Real-Time Workshop

1-18

¢ External mode: You can monitor and log signals from an externally
executing program via Scope blocks and several other types of external mode
compatible blocks. See “External Signal Uploading and Triggering” on
page 6-11 for a discussion of this method.

® External C application program interface (API): You can write your own C
API for signal monitoring using support files provided by The MathWorks.
See “Targeting Real-Time Systems” on page 14-1 for more information.

® MAT-file logging: You can use a MAT-file to log data from the generated
executable. See “Workspace I/O Options and Data Logging” on page 2-22 for
more information.

® Simulink: You can use any of the Simulink data logging capabilities.

Interface with Signals and Parameters

You can interface signals and parameters in your model to hand-written code
by specifying the storage declarations of signals and parameters. For more
information, see

® “Parameters: Storage, Interfacing, and Tuning” on page 5-2

® “Signal Storage, Optimization, and Interfacing” on page 5-17

® “Interfacing Signals to External Code” on page 5-25

Learn from Sample Implementations

Real-Time Workshop provides sample implementations that illustrate the
development of real-time programs under DOS and Tornado, as well as generic
real-time programs under Windows and UNIX.

These sample implementations are located in the following directories:
® matlabroot/rtw/c/grt: Generic real-time examples

® matlabroot/rtw/c/dos: DOS examples
® matlabroot/rtw/c/tornado: Tornado examples

Code Generation and the
Build Process

This chapter continues the discussion of code generation and the build process, previously introduced
in Chapter 1, “Understanding Real-Time Workshop.” First we present the details of the Real-Time
Workshop user interface. The sections that follow concern the code generation phase of the build
process.

The Real-Time Workshop User The features that you control via the Real-Time
Interface (p. 2-2) Workshop tab of the Simulation Parameters dialog
Simulation Parameters and Code Describes how options on the Simulink Solver,
Generation (p. 2-21) Workspace I/0, Diagnostics, and Advanced panes interact

with code generation, and how to trace code back to the
blocks that generated it

Selecting a Target Configuration Describes how to use the System Target File Browser,

(p. 2-41) with summaries of target configurations that you can
access through the browser

Making an Executable (p. 2-48) How to control generation of executables during the build
process

Choosing and Configuring Your Aspects of installing a compiler and choosing appropriate

Compiler (p. 2-52) template makefiles

Template Makefiles and Make Options Summarizes available template makefiles and make

(p. 2-55) command options

Configuring the Generated Code via Using the Target Language Compiler to generate source

TLC (p. 2-60) code in specific ways or to possess specific characteristics

2 Code Generation and the Build Process

2-2

The Real-Time Workshop User Interface

Many parameters and options affect the way that Real-Time Workshop
generates code from your model and builds an executable. To set these
parameters and options, you interact with the panes of the Simulation
Parameters dialog box.

The Simulink Solver, Workspace I/O, Diagnostics, and Advanced panes affect
both the behavior of the model in simulation, and the code generated from the
model. “Simulation Parameters and Code Generation” on page 2-21 discusses
how Simulink settings affect the code generation process.

The Real-Time Workshop pane lets you set parameters that directly affect code
generation and optimization. You also initiate and control the build process
from the Real-Time Workshop pane.

Using the Real-Time Workshop Pane

There are two ways to open the Real-Time Workshop pane:

® From the Simulation menu, choose Simulation Parameters. When the
Simulation Parameters dialog box opens, click on the Real-Time
Workshop tab.

¢ Alternatively, select Options from the Real-Time Workshop submenu of
the Tools menu in the Simulink window.

The Real-Time Workshop pane is divided into two sections. The upper section
contains the Category menu and the Build button.

Category Menu

The Category menu lets you select and work with various groups of options
and controls. The currently-selected group of options is displayed in the lower
section of the pane. Figure 2-1 shows the Category menu in the Real-Time
Workshop pane.

The Real-Time Workshop User Interface

) Simulation Barestt =ICIXl) category menu selects groups of code
Solverl Workspacel.-"Dl Diagrostics | &d Time workshop generuﬁon oplions ﬂﬂd conlr0|s.
Ea@;lTarget configuration j Build — Build bU”Oﬂ initiates (Ode generulion und

Caonfiguration build process.
System target file: I grt.te: Browse...l
Template makefile: I art_default_tmf
Make command: I Take_rhw
[~ Generate code anly Stateflow options... |
QK | Cancel | Help | Apply |

Figure 2-1: Category Menu and Build Button in Real-Time Workshop Pane

The categories of options available from the Category menu are:

® Target configuration High-level options related to control of the code
generation and build process and selection of control files.

® TLC debugging Target Language Compiler debugging and execution
profiling options.

® General code generation options Code generation settings that are
common to all target configurations.

® General code appearance options Code and identifier formatting
settings that are common to all target configurations.

® Target-specific code generation options One or more groups of
options that are specific to the selected target configuration.

Build Button
Click on the Build button to initiate the code generation and build process.

The following methods of initiating a build are exactly equivalent to clicking
the Build button:

¢ Select Build Model from the Real-Time Workshop submenu of the Tools
menu in the Simulink window (or use the key sequence Ctrl+B).

2-3

2 Code Generation and the Build Process

2-4

¢ Invoke the rtwbuild command from the MATLAB command line. The syntax
of the rtwbuild command is

rtwbuild modelname
or
rtwbuild('modelname’)

where modelname is the name of the source model. If the source model is not
loaded into Simulink, rtwbuild loads the model.

Note When Generate code only is selected on the Target Configuration
portion of the Real-Time Workshop pane, the Build button’s name changes to
Generate code.

Getting Context-sensitive Help with ToolTips

The Real-Time Workshop pane supports “ToolTip” online help. Place your
cursor over any edit field name or check box to display a message box that
briefly explains the option.

The following sections summarize each category of options or parameters
controlled by the Real-Time Workshop pane, with references to subsequent
sections that give details on each option or parameter.

The Real-Time Workshop User Interface

Target Configuration Options

Figure 2-2 shows the Target configuration options of the Real-Time
Workshop pane.

Name of your model

Target configuration category shows
current configuration of system target file,

-} Simulation Parameters: (14 template makefile, and make command for
your desired target.

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feabfime Workshop

Category: I Target configuration ‘ j Biuild |

Configuration Browse button opens System Target File
System targetfle: [gnie Bowss |~<@——— Browser for selection of o target
Template makefile: I art_default_trof COﬂﬁgUI’ﬂﬁOﬂ.

Make command: I make_tw <
[~ Generate code anly \tateflow options...

System target file name is
displayed or entered here.
Specify TLC options after
filename.

QK | Eancell Help | Apply |

Make command name is
displayed or entered here.
Specify make options after
make command name.

Figure 2-2: The Real-Time Workshop Pane: Target Configuration Options

Browse

The Browse button opens the System Target File Browser (See Figure 2-11 on
page 2-42). The browser lets you select a preset target configuration consisting
of a system target file, template makefile, and make command.

“Selecting a Target Configuration” on page 2-41 details the use of the browser
and includes a complete list of available target configurations.

System Target File
The System target file field has these functions:

2-5

2 Code Generation and the Build Process

¢ If you have selected a target configuration using the System Target File
Browser, this field displays the name of the chosen system target file
(target.tlc).

¢ If you are using a target configuration that does not appear in the System
Target File Browser, you must enter the name of the desired system target
file in this field.

® After the system target filename, you can enter code generation options and
variables for the Target Language Compiler. See “Target Language
Compiler Variables and Options” on page 2-60 for details.

Template Makefile
The Template makefile field has these functions:

¢ If you have selected a target configuration using the System Target File
Browser, this field displays the name of an M-file that selects an appropriate
template makefile for your development environment. For example, in
Figure 2-2, the Template makefile field displays grt_default_tmf,
indicating that the build process will invoke grt_default_tmf.m.

“Template Makefiles and Make Options” on page 2-55 gives a detailed
description of the logic by which Real-Time Workshop selects a template
makefile.

® Alternatively, you can explicitly enter the name of a specific template
makefile (including the extension) in this field. You must do this if you are
using a target configuration that does not appear in the System Target File
Browser. This is necessary if you have written your own template makefile
for a custom target environment.

If you specify your own template makefile, be careful to include the filename
extension. If a filename extension is not included in the Template makefile
field, Real-Time Workshop attempts to find and execute a file with the
extension .m (i.e., an M-file).

Make Command

A high-level M-file command, invoked when a build is initiated, controls the
Real-Time Workshop build process. Each target has an associated make
command. The Make command field displays this command.

The Real-Time Workshop User Interface

Almost all targets use the default command, make rtw. “Targets Available from
the System Target File Browser” on page 2-43 lists the make command
associated with each target.

Third-party targets may supply another make command. See the vendor’s
documentation.

In addition to the name of the make command, you can supply arguments in the
Make command field. These arguments include compiler-specific options,
include paths, and other parameters. When the build process invokes the make
utility, these arguments are passed along in the make command line.

“Template Makefiles and Make Options” on page 2-55 lists the Make
command arguments you can use with each supported compiler.

Generate Code Only

When this option is selected, the build process generates code but does not
invoke the make command. The code is not compiled and an executable is not
built.

When this option is selected, the caption of the Build button changes to
Generate code.

Stateflow Options

If the model contains any Stateflow blocks, this button will launch the
Stateflow Options dialog box. Refer to the Stateflow documentation for
information.

General Code Generation Options

The general code generation options are common to all target configurations.
These options are organized into two groups, selected from the Category
menu, as shown in Figure 2-3 and Figure 2-4.

2-7

2 Code Generation and the Build Process

2-8

~) Simulation I = 3

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Category: I General code generation options j Biuild |

Options
I~ Show eliminated statements

Loop rolling threshold: | 5
V¥ Verbose builds

I~ Generate HTML repart
¥ Inling invariant signals
¥ Local block outputs

[Force generation of parameter comments

QK | Eancell Help | Apply |

Figure 2-3: General Code Generation Options

Show Eliminated Statements

If this option is selected, statements that were eliminated as the result of
optimizations (such as parameter inlining) appear as comments in the
generated code. The default is not to include eliminated statements.

Loop Rolling Threshold

The loop rolling threshold determines when a wide signal or parameter should
be wrapped into a for-loop and when it should be generated as a separate
statement for each element of the signal. The default threshold value is 5.

For example, consider the model below:

Sine Wave Gain Scope

The gain parameter of the Gain block is the vector myGainVec.

The Real-Time Workshop User Interface

x|
Element-wize gain [y = K.*u] or matriz gain [= Ku or p = u*k),
Gain:
ImyGainVec
Multiplication: IEIement-wise[K."u] j
| I Show additional parameters -
QK | Cancel | Help | Apply |

Assume that the loop rolling threshold value is set to the default, 5.
If myGainVec is declared as
myGainVec = [1:10];

an array of 10 elements, rtP.Gain_Gain[] is declared within the Parameters
data structure, rtP. The size of the gain array exceeds the loop rolling
threshold. Therefore the code generated for the Gain block iterates over the
array in a for loop, as shown in the following code fragment:
/* Gain: '<Root>/Gain'

*

* Regarding '<Root>/Gain':

* Gain value: myGainVec

*/

{

int T it;

real T *y0 = &rtB.Gain[0];
const real T *p_Gain_Gain = &rtP.Gain_Gain[O0];

for (i1=0; i1 < 10; it++) {
y0[i1] = rtb_foo * p_Gain_Gain[i1];
I3
}

If myGainVec is declared as

myGainVec = [1:3];

2-9

2 Code Generation and the Build Process

2-10

an array of three elements, rtP.Gain_Gain[] is declared within the
Parameters data structure, rtP. The size of the gain array is below the loop
rolling threshold. The generated code consists of inline references to each
element of the array, as in the code fragment below.

rtB.Gain[0] = rtb_foo * (rtP.Gain_Gain[0]);
rtB.Gain[1] = rtb_foo * (rtP.Gain_Gain[1]);
rtB.Gain[2] = rtb_foo * (rtP.Gain_Gain[2]);

See the Target Language Compiler Reference Guide for more information on
loop rolling.

Verbose Builds

If this option is selected, the MATLAB command window displays progress
information during code generation; compiler output is also made visible.

Generate HTML Report

If this option is selected, Real-Time Workshop produces a code generation
report in HTML format and automatically opens it for viewing in the MATLAB
Help browser. The contents of the report vary from one target to another, but
all reports contain the following code generation details:

® The Summary section lists version and date information, TLC options used
in code generation, and Simulink model settings.

® The Generated Source Files section contains a table of source code files
generated from your model. You can view the source code in the MATLAB
Help browser. Hyperlinks within the displayed source code let you view the
blocks or subsystems from which the code was generated. Click on the
hyperlinks to view the relevant blocks or subsystems in a Simulink model
window.

The Real-Time Workshop Embedded Coder code generation report produces
additional information, such as suggestions for code generation options, to help
you optimize what is output. For further information see the Real-Time
Workshop Embedded Coder documentation.

The Real-Time Workshop User Interface

Inline Invariant Signals

An invariant signal is a block output signal that does not change during
Simulink simulation. For example, the signal S$3 in this block diagram is an
invariant signal.

1

Constant

2

Constant1

Note The Inline invariant signals option is unavailable unless the Inline
parameters option (on the Advanced pane) is selected.

Given the model above, if both Inline parameters and Inline invariant
signals are selected, Real-Time Workshop inlines the invariant signal S3 in the
generated code.

Note that an invariant signal is not the same as an invariant constant. (See the
Using Simulink manual for information on invariant constants.) In the above
example, the two constants (1 and 2) and the gain value of 3 are invariant
constants. To inline these invariant constants, select Inline parameters.

Local Block Outputs

When this option is selected, block signals will be declared locally in functions
instead of being declared globally (when possible).

Note This check box is disabled when the Signal storage reuse item on the
Advanced pane is turned off.

2-11

2 Code Generation and the Build Process

2-12

For further information on the use of the Local block outputs option, see
“Signal Storage, Optimization, and Interfacing” on page 5-17. Also go through
“Tutorial 4: A First Look at Generated Code” on page 3-23 of the Getting
Started guide if you have not done so already.

Force Generation of Parameter Comments

The Force generation of parameter comments option controls the generation
of comments in the model parameter structure declaration in model prm.h.
Parameter comments indicate parameter variable names and the names of
source blocks.

When this option is off (the default), parameter comments are generated if less
than 1000 parameters are declared. This reduces the size of the generated file
for models with a large number of parameters.

When this option is on, parameter comments are generated regardless of the
number of parameters.

General Code Generation Options (cont.)

Buffer Reuse

When the Buffer reuse option is on (the default) Real-Time Workshop reuses
signal memory whenever possible. When Buffer reuse is off, signals are
stored in unique locations.

Note that the Buffer reuse option is enabled only when the Signal storage
reuse option on the Advanced pane of the Simulation Parameters dialog box
is selected.

See “Signal Storage, Optimization, and Interfacing” on page 5-17 for further
information (including generated code example) on Buffer reuse and other
signal storage options.

Expression Folding

Expression folding is a code optimization technique that can dramatically
improve the efficiency of generated code by minimizing the computation of
intermediate results and the use of temporary buffers or variables.

Expression folding is enabled by default. We strongly recommended that you
use this option. See “Expression Folding” on page 9-3 for full details on this

The Real-Time Workshop User Interface

feature and related options that you can control from the General code

generation options (cont.) pane.

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Category: I General code generation options [cont.] j Biuild |

Options
¥ Buffer reuse

¥ Expression folding
¥ Fold unralled vectars

¥ Enforce integer downcast

=10l

QK | Eancell Help | Apply |

Figure 2-4: General Code Generation Options (cont.)

General Code Appearance Options

The General code appearance options control formatting of source code and
construction of identifiers. This interface is shown below.

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

j Generate codel

Category: I General code appearance options

Options

M aximurn identifier length: | 31
™ Include data type acranym in identifier
¥ Include spstem hierarchy number in identifiers

¥ Prefix model name to global identifiers

Generate scalar inlined parameters az [Literals j

¥ Generate comments

=10l

QK | Eancell Help | Apply |

Figure 2-5: General Code Appearance Options

2-13

2 Code Generation and the Build Process

2-14

Maximium Identifier Length

The Maximium identifier length field allows you to limit the number of
characters in function, typedef, and variable names. The default is 31
characters, but Real-Time Workshop imposes no upper limit.You may choose
to increase this length for models with deep hierarchical structure, as well as
when exercising some of the mnemonic identifier options described below.

Include Data Type Acronym in Identifier

Selecting Include data type acronym in identifier enables you to prepend
acronyms such as 132 (for long integers) to signal and work vector identifiers
to make code more readable. The default is not to include datatype acronyms
in identifiers. For example, with this option selected, Real-Time Workshop
identifies a scalar double signal from a discrete pulse generator as follows:

{
/* local block i/o variables */
real T rtb_r64_A_Pulse;

rtY.out1 = (rtP.A_Gain_Gain * rtb_r64_A Pulse);
}

Include System Hierarchy Number in Identifiers

When this option is selected, Real-Time Workshop inserts identification tags in
the generated code (in addition to tags included in comments). The tags are
designed to help you identify the nesting level, within your source model, of the
block that generated a given line of code.

When this option is ON, the tag format is either

® The string root_ for root-level blocks; or

® The string sN_ where N is a unique system number assigned by Simulink, for
blocks at the subsystem level.

By default, Include system hierarchy number in identifiers is OFF, in order
to generate more compact code.

The Real-Time Workshop User Interface

As an example, consider hier.mdl, the model in this picture.

Out1

Subsystemn

The subsystem within hier.mdl is shown in the picture below.

>

A_FPulse A_Gain

With Include system hierarchy number in identifiers on, the following code
is generated for the Outl block of hier.mdl. The code includes the tag s1_in
the symbols generated for the subsystem, and the tag root_ in the symbol
generated for the root-level Outl block.

/* Outport: <Root>/0Out1 incorporates:
* Gain: <S1>/A_Gain
*
* Regarding <S1>/A_Gain:
* Gain value: hier_P.s1_A_Gain_Gain
*/
hier_Y.root_Out1 = (hier_P.s1_A_Gain_Gain * rtb_s1_A_Pulse);

This code, generated with Include system hierarchy number in identifiers
off, does not contain a subsystem tag in the generated symbols.

/* Outport: <Root>/Out1 incorporates:
* Gain: <S81>/A_Gain
*
* Regarding <S1>/A_Gain:
* Gain value: hier_P.A_Gain_Gain
*/
hier_Y.Out1 = (hier_P.A _Gain_Gain * rtb_A Pulse);

See “Tracing Generated Code Back to Your Simulink Model” on page 2-34 for
further information on using system and block identification tags.

2-15

2 Code Generation and the Build Process

2-16

Prefix Model Name to Global Identifiers

When this option is selected, subsystem function names are prefixed with the
name of the model (model) for all code formats. In addition, when appropriate
to the code format, the model name is also prefixed to the names of functions
and data structures at the model level. This is useful when you need to compile
and link code from two or more models into a single executable, as it avoids
potential name clashes. Prefix model name to global identifiers is ON by
default.

Generate Scalar Inlined Parameters as

When the Inline Parameters Option is selected and signals are scalars having
constant sample time, this pull-down menu enables you to control how
parameters are expressed in the code. There are two choices for this option:

® | iterals — parameters are expressed as numeric constants

® Mlacros — parameters are expressed as variables (via #define macros)

The default is Literals. This provides backward compatibility to prior
versions of Real-Time Workshop, which lacked this option. It also may help in
debugging TLC code, as it makes the values of parameters easy to search for.
The Macros option, on the other hand, may make code more readable.

Generate Comments

By default, Generate comments is ON. If this option is OFF, generation of
comments in the code is completely suppressed. The Show eliminated
statements and Force generation of parameter comments options in the
General code generation category enable the inclusion of those specific types
of comments.

Target-Specific Code Generation Options

Different target configurations support different code generation options that
are not supported by all available targets. For example, the grt, grt_malloc, ert,
rapid simulation, Tornado, xPC, TI DSP, and Real-Time Windows targets
support external mode, but other targets do not.

This section summarizes the options specific to the generic real-time (GRT)
target. For information on options specific to other targets, see the
documentation relevant to those targets. “Available Targets” on page 2-42 lists
targets and related chapters and manuals.

The Real-Time Workshop User Interface

=10l

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Category: I GRT code generation options j Generate codel

Options
MAT-file wariable name modifier: | r_ j

I~ Esternal mode

¥ lgnore custom storage classes

QK | Eancell Help | Apply |

Figure 2-6: GRT Code Generation Options

MAT-File Variable Name Modifier Menu

This menu selects a string to be added to the variable names used when logging
data to MAT-files. You can select a prefix (rt_), suffix (_rt), or choose to have
no modifier. Real-Time Workshop prepends or appends the string chosen to the
variable names for system outputs, states, and simulation time specified in the
Workspace I/0 pane.

See “Workspace I/O Options and Data Logging” on page 2-22 for information
on MAT-file data logging.

External Mode Option

Selecting this option turns on generation of code to support external mode
communication between host and target systems. This option is available for
most targets. For information see “External Mode” on page 6-1.

Ignore Custom Storage Classes Option

Note This option is enabled only if your installation is licensed to use the
Real-Time Workshop Embedded Coder. If you do not have a license for
Embedded Coder, this option will be disabled (grayed out).

2-17

2 Code Generation and the Build Process

2-18

When this option is on, data objects with custom storage classes are treated as
if their storage class attribute is set to Auto.

This option is useful if you have defined data objects with custom storage
classes in your model (for use with the Real-Time Workshop Embedded Coder),
but also want to generate code from your model using other targets (such as
GRT or grt_malloc). In such a case, you can turn Ignore Custom Storage
Classes on to generate code that does not include custom storage definitions,
without reconfiguring the storage definitions of the model.

For the GRT and grt_malloc targets, this option is on by default. For the
Real-Time Workshop Embedded Coder, this option is off by default.

You can also enter the option directly into the System target file field in the
Target configuration category of the Real-Time Workshop pane. The
following example turns the option on

-aIgnoreCustomStorageClasses=1

See “Using Custom Storage Classes” in the Real-Time Workshop Embedded
Coder documentation for further information.

TLC Debugging Options

<} Simulation Parameters: f14 =10 x]

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Category: I TLC debugging j Biuild |
Options
I Retain itw file
I~ Profile TLC

[Start TLC debugger when generating code
[Start TLC coverage when generating code

I~ Enable TLC assertions

QK | Eancell Help | Apply |

The TLC Debugging options are of interest to those who are writing TLC code
when customizing targets, integrating legacy code, or developing new blocks.

The Real-Time Workshop User Interface

These options are summarized here; refer to the Target Language Compiler
documentation for details. The TLC Debugging options are

Retain .rtw file

Normally, the build process deletes the model.rtw file from the build
directory at the end of the build. When Retain .rtw file is selected,

model .rtwis not deleted. This option is useful if you are modifying the target
files, in which case you will need to look at the model . rtw file.

Profile TLC

When this option is selected, the TLC profiler analyzes the performance of
TLC code executed during code generation, and generates a report. The
report is in HTML format and can be read by your Web browser.

Start TLC debugger when generating code
This option starts the TLC debugger during code generation.
You can also invoke the TLC debugger by entering the -dc argument into the
System Target File field on the Real-Time Workshop pane.

To invoke the debugger and run a debugger script, enter -df filename into
the System Target File field on the Real-Time Workshop pane.

Start TLC coverage when generating code
When this option is selected, the Target Language Compiler generates a
report containing statistics indicating how many times each line of TLC code
is hit during code generation.

This option is equivalent to entering the -dg argument into the System
Target File field on the Real-Time Workshop pane.

Enable TLC Assertions

When this box is selected, Real-Time Workshop will halt building if any
user-supplied TLC file contain an %assert directive that evaluates to FALSE.
The box is not selected by default, meaning that TLC assertion code will be
ignored. You may also use these MATLAB commands to control TLC
assertion handling:

2-19

2 Code Generation and the Build Process

2-20

set_param(model, 'TLCAssertion', 'on|off') to set this flag on or off.
Default is Off.

get_param(model, 'TLCAssertion') to see the current setting.

Real-Time Workshop Submenu

The Tools menu of the Simulink window contains a Real-Time Workshop
submenu. The submenu items are:

® Options — Open the Real-Time Workshop pane of the Simulation
Parameters dialog.

¢ Build Model — Initiate code generation and build process; equivalent to
clicking the Build button in the Real-Time Workshop pane.

® Build Subsystem — Generate code and build an executable from a
subsystem; enabled only when a subsystem is selected. See “Generating
Code and Executables from Subsystems” on page 4-15.

¢ Generate S-Function — Generate code and build an S-function from a
subsystem; enabled only when a subsystem is selected. See “Automated
S-Function Generation” on page 10-11.

File Edit WYiew Simulation Format | Tools Help

D |D'u n §| é{) E |: Data explorer. ..
Simulink debugger. ..
Look-up table editor. ..
Data class designer...
Model discretizer. ..

i 3
out1 Model differences

Prafiler

=10l x|

Coverage settings. ..

Subsystemn

shop Options. ..

contral panel... Build Model Chrl+B
Build Subsysten, ..

Generate S-Funckion. ..,

External

Fixed-Paint settings. ..
Linear analysis. ..

oo [[

Report generator, .,
Requirements management interface. ..

Figure 2-7: Real-Time Workshop Submenu

Simulation Parameters and Code Generation

Simulation Parameters and Code Generation

This section discusses how the simulation parameters of your model interact

with Real-Time Workshop code generation. Only simulation parameters that

affect code generation are mentioned here. For a full description of simulation
parameters, see the Simulink documentation.

This discussion is organized around the following panes of the Simulation
Parameters dialog box:

¢ Solver pane

® Workspace I/O pane

® Diagnostics pane

¢ Advanced pane

To view these panes, choose Simulation parameters from the Simulation
menu. When the dialog box opens, click the appropriate tab.

Solver Options

Solver Type

If you are using an S-function or Rapid Simulation (RSIM) target, you can
specify either a fixed-step or a variable-step solver. All other targets require a
fixed-step solver.

Mode

Real-Time Workshop supports both single- and multitasking modes. See
“Models with Multiple Sample Rates” on page 8-1 for full details.

Start and Stop Times

The stop time must be greater than or equal to the start time. If the stop time
is zero, or if the total simulation time (Stop - Start) is less than zero, the
generated program runs for one step. If the stop time is set to inf, the
generated program runs indefinitely.

Note that when using the GRT or Tornado targets, you can override the stop
time when running a generated program from the DOS or UNIX command line.
To override the stop time that was set during code generation, use the -tf
switch.

2-21

2 Code Generation and the Build Process

2-22

model -tf n

The program will run for n seconds. If n = inf, the program will run
indefinitely. See “Part 3: Running the External Mode Target Program” on
page 3-40 of the Real-Time Workshop Getting Started Guide for an example of
the use of this option.

Note Certain blocks have a dependency on absolute time. If you are
designing a program that is intended to run indefinitely (Stop time = inf), you
must not use these blocks. See Appendix B, “Blocks That Depend on Absolute
Time” for documentation on which blocks behave this way.

Workspace 1/0 Options and Data Logging

This section discusses several different methods by which a Real-Time
Workshop generated program can save data to a MAT-file for later analysis.
These methods include

¢ Using the Workspace I/0 pane to define and log workspace return variables
® Logging data from Scope and To Workspace blocks

¢ Logging data using To File blocks

=10l
Solverl Workspacel.-"Dl Diagnosticsl Advancedl Heal-TimeW’orkshopl
Load from workspace Save to workspace
[Input: W ¥ Time: ltUUt—
[Initial state: W [~ States: IRUUt—
v Output: lyout—
[~ Final state: W
Save options
¥ Limit data points to last: I 1000
Decimation: I 1
Farmat: IAnay j
QK | Cancel | Help | Apply |

Figure 2-8: The Workspace 1/O Pane

Simulation Parameters and Code Generation

“Tutorial 2: Data Logging” on page 3-15 of the Real-Time Workshop Getting
Started guide is an exercise designed to give you hands-on experience with
data logging features of Real-Time Workshop.

Note Data logging is available only for targets that have access to a file
system.

Logging States, Time, and Outputs via the Workspace 1/O Pane

The Workspace I/O pane enables a generated program to save system states,
outputs, and simulation time at each model execution time step. The data is
written to a MAT-file, named (by default) model.mat.

Before using this data logging feature, you should learn how to configure a
Simulink model to return output to the MATLAB workspace. This is discussed
in the Simulink documentation.

For each workspace return variable that you define and enable, Real-Time
Workshop defines a MAT-file variable. For example, if your model saves
simulation time to the workspace variable tout, your generated program will
log the same data to a variable named (by default) rt_tout.

Real-Time Workshop logs the following data:

e All root Outport blocks
The default MAT-file variable name for system outputs is rt_yout.

The sort order of the rt_yout array is based on the port number of the
Outport block, starting with 1.

e All continuous and discrete states in the model
The default MAT-file variable name for system states is rt_xout.
® Simulation time
The default MAT-file variable name for simulation time is rt_tout.

Real-Time Workshop data logging follows the Workspace I/O Save options:
(Limit data points, Decimation, and Format).

Overriding the Default MAT-File Name. The MAT-file name defaults to model.mat.
To specify a different filename:

2-23

2 Code Generation and the Build Process

2-24

1 Choose Simulation parameters from the Simulation menu. The dialog box
opens. Click the Real-Time Workshop tab.

2 Append the following option to the existing text in the Make command field.

OPTS="-DSAVEFILE=filename"

Overriding Default MAT-File Variable Names. By default, Real-Time Workshop
prepends the string rt_ to the variable names for system outputs, states, and
simulation time to form MAT-file variable names. To change this prefix:

1 Choose Simulation parameters from the Simulation menu. The dialog box
opens. Click the Real-Time Workshop tab.

2 Select the target-specific code generation options item from the Category
menu.

3 Select a prefix(rt_) or suffix (_rt) from the MAT-file variable name
modifier field, or choose none for no prefix.

Logging Data with Scope and To Workspace Blocks

Real-Time Workshop also logs data from these sources:

o All Scope blocks that have the save data to workspace option enabled

You must specify the variable name and data format in each Scope block’s
dialog box.

e All To Workspace blocks in the model

You must specify the variable name and data format in each To Workspace
block’s dialog box.

The variables are written to model.mat, along with any variables logged from
the Workspace I/O pane.

Logging Data with To File Blocks

You can also log data to a To File block. The generated program creates a
separate MAT-file (distinct from model.mat) for each To File block in the model.
The file contains the block’s time and input variable(s). You must specify the
filename, variable name(s), decimation, and sample time in the To File block’s
dialog box.

Simulation Parameters and Code Generation

Note that the To File block cannot be used in DOS real-time targets because of
limitations of the DOS target.

Data Logging Differences in Single- and Multitasking Models

When logging data in singletasking and multitasking systems, you will notice
differences in the logging of

® Noncontinuous root Outport blocks
® Discrete states
In multitasking mode, the logging of states and outputs is done after the first

task execution (and not at the end of the first time step). In singletasking mode,
Real-Time Workshop logs states and outputs after the first time step.

See “Data Logging In Singletasking and Multitasking Model Execution” on
page 7—13 for more details on the differences between single- and multitasking
data logging.

Note The rapid simulation target (rsim) provides enhanced logging options.
See “Real-Time Workshop Rapid Simulation Target” on page 11-1 for more
information.

2-25

2 Code Generation and the Build Process

2-26

Diagnostics Pane Options

Solverl Workspacel.-"Dl Diagnostics Advancedl Heal-TimeW’orkshopl

Simulation options

Consistency checking: Inone 'l Boundz checking: Inone 'l

Configuration options:

Action

----%olver Performance--------------- j £ Hone
Algebraic loop Warning
Elock priority wiolation Warning Waming
Min step size wiolation Warning oo

Sample Tim
-1 sample time in source Warning
Discrete used as continuous Warning
MultiTask rate transition Error
S:Ii.ngleTask rate transition Nonle _|_'|
4 *

=10l

QK | Eancell Help | Apply |

The Diagnostics pane specifies what action should be taken when various
model conditions such as unconnected ports are encountered. You can specify
whether to ignore a given condition, issue a warning, or raise an error. If an
error condition is encountered during a build, the build is terminated. The
Diagnostics pane is fully described in the Simulink documentation.

Simulation Parameters and Code Generation

Advanced Pane Options

~} Simulation s 9
Solverl Workspacel.-"Dl Diagnosticsl Advanced HeaI-TimeW’orkshopl
Model parameter configuration
™ Inline parameters Eonfigure...l
Optimizations:)
Action
Elock reduction 0ff ﬂ © on
Boolean logic sigmals 0ff
Conditional input branch On) [ff
Parametetr tinnline fn ¥
Model Yerification block contral: IUse local settings 'l
Production hardware characteristics: IMicroprocessor j
BitsPerChar 5 ﬂ Value:
RitaPerTnt 57 ¥ I
QK | Eancell Help | Apply |

The Advanced pane includes several options that affect the performance of
generated code. The Advanced pane has two sections. Options in the Model
parameter configuration section let you specify how block parameters are
represented in generated code, and how they are interfaced to externally
written code. Options in the Optimizations section help you to optimize both
memory usage and code size and efficiency.

Note that the Zero crossing detection option affects only simulations with
variable-step solvers. Therefore, this option is only applicable to code
generation when using the rapid simulation (rsim) target, which is the only
target that allows variable-step solvers. See the Simulink documentation for
further information on the Zero crossing detection option.

Inline Parameters Option
Selecting this option has two effects:

1 Real-Time Workshop uses the numerical values of model parameters,
instead of their symbolic names, in generated code.

If the value of a parameter is a workspace variable, or an expression
including one or more workspace variables, the variable or expression is
evaluated at code generation time. The hard-coded result value appears in
the generated code. An inlined parameter, since it has in effect been

2-27

2 Code Generation and the Build Process

2-28

transformed into a constant, is no longer tunable. That is, it is not visible to
externally written code, and its value cannot be changed at run-time.

2 The Configure button becomes enabled. Clicking the Configure button
opens the Model Parameter Configuration dialog box.

The Model Parameter Configuration dialog box lets you remove individual
parameters from inlining and declare them to be tunable variables (or global
constants). When you declare a parameter tunable, Real-Time Workshop
generates a storage declaration that allows the parameter to be interfaced
to externally written code. This enables your hand-written code to change
the value of the parameter at run-time.

The Model Parameter Configuration dialog box lets you improve overall
efficiency by inlining most parameters, while at the same time retaining the
flexibility of run-time tuning for selected parameters.

See “Parameters: Storage, Interfacing, and Tuning” on page 5-2 for further
information on interfacing parameters to externally written code.

The Inline parameters option also instructs Simulink to propagate constant
sample times. Simulink computes the output signals of blocks that have
constant sample times once during model startup. This improves performance,
since such blocks do not compute their outputs at every time step of the model.

Selecting Inline parameters also interacts with other code generation
parameters as follows:

¢ When Inline parameters is selected, the Inline invariant signals code
generation option becomes available. See “Inline Invariant Signals” on
page 2-11.

¢ The Parameter pooling option is used only when Inline parameters is
selected. See “Parameter Pooling Option” on page 2-30.

Block Reduction Option

When this option is selected, Simulink collapses certain groups of blocks into a
single, more efficient block, or removes them entirely. This results in faster
model execution during simulation and in generated code. The appearance of
the source model does not change.

By default, the Block reduction option is on.

Simulation Parameters and Code Generation

The types of block reduction optimizations currently supported are

Accumulator Folding. Simulink recognizes certain constructs as accumulators,
and reduces them to a single block. For a detailed example, see “Accumulators”
on page 9-36.

Removal of Redundant Type Conversions. Unnecessary type conversion blocks are
removed. For example, an int type conversion block whose input and output
are of type int is redundant and will be removed.

Dead Code Elimination. Any blocks or signals in an unused code path are
eliminated from the generated code the Block reduction option is on. There
are three conditions that all need to be met for a block to be considered part of
an unused code path:

1 The block is in a signal path that ends with a Terminator block or a disabled
Assertion block.

2 The block is not in any other signal path.

3 The block does not reference any tunable or global parameters or signal
storage.

Consider the model in the following block diagram.

2>
Out1
Unbead&aint

In2 i
Deadainz Terminator

Code is always generated for the signal path between In1 and Out1, because
this path does not meet condition 1 above. If Inline parameters is off, code is
also generated for the signal path between the In2 and Terminator blocks,
because condition 3 is not satisfied (Gain2 is tunable).

If Inline parameters is on, however, the terminated signal path meets all
three conditions, and is eliminated. The resultant Md10utputs function is
shown in the following code excerpt.

2-29

2 Code Generation and the Build Process

2-30

void MdlOutputs(int_T tid)

{
/* Outport: '/Out1' incorporates:
* Gain: '/Gaint'
* Inport: '/Int'
*
* Regarding '/Gaint':
* Gain value: 2.0
*/
rtY.outl = (2.0 * rtU.Int);
}

Boolean Logic Signals Option

By default, Simulink does not signal an error when it detects that double
signals are connected to blocks that prefer Boolean input. This ensures
compatibility with models created by earlier versions of Simulink that support
only double data types. You can enable strict Boolean type checking by
selecting the Boolean logic signals option.

Selecting this option is recommended. Generated code will require less
memory, because a Boolean signal typically requires one byte of storage while
a double signal requires eight bytes of storage.

Parameter Pooling Option

Parameter pooling occurs when multiple block parameters refer to storage
locations that are separately defined but structurally identical. The
optimization is similar to that of a C compiler that encounters declarations
such as:

int a[] = {1,2,3};
int b[] {1,2,3};

In such a case, an optimizing compiler would collapse a and b into a single text
location containing the values 1, 2, 3 and initialize a and b from the same
code.

Simulation Parameters and Code Generation

To understand the effect of parameter pooling in Real-Time Workshop,
consider the following scenario.

Assume that the MATLAB workspace variables a and b are defined as follows:
a = [1:1000]; b = [1:1000];

Suppose that a and b are used as vectors of input and output values in two
Look-Up Table blocks in a model. Figure 2-9 shows the model.

Loaok-Up
Tabled *

Famp Product

Loaok-Up
Table2

Figure 2-9: Model with Pooled Storage for Look-Up Table Blocks

The figure below shows the use of a and b as a parameters of the Look-Up
Tablel and Look-Up Table2 blocks.

Elock Parameters: Look- Black Parameters: Look-Up Table2
- Look-Up Table - Look-Up Table
Perform 1-D linear interpolation of input values using the specified table. Perfarm 1-D1 linear interpolation of input values uzing the specified table.
Extrapolation is performed outside the table boundaries. Extrapolation is performed outzide the table boundaries.
P b)
Wector of input values: Wector of input values
Ja [t
Yector of output values: Yector of output values:
Jtankia) [tankib]
T R - 0k | Cancel | Heb B

Figure 2-10: Pooled Storage in Look-Up Table Blocks
If Parameter pooling is on, pooled storage is used for the input/output data of

the Look-Up Table blocks. The following code fragment shows the definition of
the global parameter structure of the model (rtP). The input data references

2-31

2 Code Generation and the Build Process

2-32

to a and b are pooled in the field rtP.p2. Likewise, while the output data
references (expressions including a and b) are pooled in the field rtP.p3.

typedef struct Parameters_tag {
real_T p2[1000]; /* Variable: p2
* External Mode Tunable: no
* Referenced by blocks:
* <Root>/Look-Up Tablet
* <Root>/Look-Up Table2
*/
real T p3[1000]; /* Expression: tanh(a)
* External Mode Tunable: no
* Referenced by blocks:
* <Root>/Look-Up Tablet
* <Root>/Look-Up Table2
*/
} Parameters;

If Parameter pooling is off, separate arrays are declared for the input/output
data of the Look-Up Table blocks. Twice the amount of storage is used:

typedef struct Parameters_tag {
real T root_Look Up_Tablei_ XData[1000];
real T root_Look Up_Tablei_YData[1000];
real T root_Look Up_Table2 XData[1000];
real T root_Look Up_Table2_ YData[1000];
} Parameters;

The Parameter pooling option has the following advantages:

® Reduces ROM size

® Reduces RAM size for all compilers (rtP is a global vector)

® Speeds up code generation by reducing the size of model.rtw

¢ Can speed up execution

Note that the generated parameter names consist of the letter p followed by a

number generated by Real-Time Workshop. Comments indicate what
parameters are pooled.

Simulation Parameters and Code Generation

Note The Parameter pooling option affects code generation only when
Inline parameters is on.

Signal Storage Reuse Option

This option instructs Real-Time Workshop to reuse signal memory. This
reduces the memory requirements of your real-time program. We recommend
selecting this option. Disabling Signal storage reuse makes all block outputs
global and unique, which in many cases significantly increases RAM and ROM
usage.

For further details on the Signal storage reuse option, see “Signal Storage,
Optimization, and Interfacing” on page 5-17.

Note Selecting Signal storage reuse also enables the Local block outputs
option and the Buffer reuse option in the General code generation options
category of the Real-Time Workshop pane. See “Local Block Outputs” on
page 2-11 and “Buffer Reuse” on page 2-12.

Control over Assertion Block Behavior

The Advanced pane of the Simulation Parameters dialog shown above also
provides you with a contol to specify whether model verification blocks such as
Assert, Check Static Gap, and related range check blocks will be enabled, not
enabled, or default to their local settings. This Model Verification block
control popup menu has the same effect on code generated by Real-Time
Workshop as it does on simulation behavior.

For Assertion blocks that are not disabled, the generated code for a model will
include one of the following statements

utAssert(input_signal);
utAssert(input_signal != 0.0);
utAssert (input_signal != 0);

at appropriate locations, depending on the block’s input signal type (Boolean,
real, or integer, respectively).

2-33

2 Code Generation and the Build Process

2-34

By default utAssert is a noop in generated code. For assertions to abort
execution you must enable them by including a parameter in the make rtw
command. Specify the Make command field on the Target configuration
category pane as follows:

make_rtw OPTS='-DDOASSERTS'

If you want triggered assertions to not abort execution and instead to print out
the assertion statement, use the following make_rtw variant:

make_rtw OPTS='-DDOASSERTS -DPRINT_ASSERTS'

utAssert is defined as

#define utAssert(exp) assert(exp)

You can provide your own definition of utAssert in a hand-coded header file if
you wish to customize assertion behavior in generated code. See
<matlabroot>/rtw/c/libsrc/rtlibsrc.h for implementation details.

Finally, when running a model in accelerator mode, Simulink will call back to
itself to execute assertion blocks instead of using generated code. Thus
user-defined callback will still be called when assertions fail.

Tracing Generated Code Back to Your
Simulink Model

Real-Time Workshop writes system/block identification tags in the generated
code. The tags are designed to help you identify the block, in your source model,
that generated a given line of code. Tags are located in comment lines above
each line of generated code, and are provided with hyperlinks in HTML codee
generation reports that you can optionally generate.

The tag format is <system>/block_name, where:

® system is either:

= the string 'root', or

= a unique system number assigned by Simulink
® plock_name is the name of the block.

The following code fragment illustrates a tag comment adjacent to a line of code
generated by a Gain block at the root level of the source model.

Simulation Parameters and Code Generation

/* Gain Block: <Root>/Gain */
rtb_temp3 *= (rtP.root_Gain_Gain);

The following code fragment illustrates a tag comment adjacent to a line of code
generated by a Gain block within a subsystem one level below the root level of
the source model:

/* Gain Block: <S1>/Gain */
rtB.temp0 *= (rtP.s1_Gain_Gain);

In addition to the tags, Real-Time Workshop documents the tags for each
model in comments in the generated header file model . h. The following
illustrates such a comment, generated from a source model, foo, which has a
subsystem Outer with a nested subsystem Inner:

/* Here is the system hierarchy for this model.
*

* <Root> : foo

* <S1> . foo/Outer
* <G2> : foo/Outer/Inner
*/

There are two ways to trace code back to subsystems, blocks and parameters in
your model:

® Through HTML code generation reports via the Help Browser, and
¢ By typing the appropriate hilite system commands to MATLAB.

The HTML report for your model.c file displays hyperlinks in “Regarding,”
“Ouport,” and other comment lines such as are shown above. Clicking on such
links in comments will cause the associated block or subsystem to be
highlighted in the model diagram. For further information, see “HTML Code
Generation Reports” on page 3-31 of the Real-Time Workshop Getting Started
Guide.

Using HTML reports is generally the fastest way to trace code back to the
model, but when you know what you are looking for you may achieve the same
result by at the command line. To manually trace a tag back to the generating
block using the hilite system command:

1 Open the source model.

2 Close any other model windows that are open.

2-35

2 Code Generation and the Build Process

2-36

3 Use the MATLAB hilite system command to view the desired system and
block.

As an example, consider the model foo mentioned above. If foo is open,
hilite_system('<S1>")

opens the subsystem Outer and
hilite_system('<S2>/Gain1"')

opens the subsystem Outer and selects and highlights the Gain block Gain1
within that subsystem.

Other Interactions Between Simulink
and Real-Time Workshop

The Simulink engine propagates data from one block to the next along signal
lines. The data propagated are

® Data type
¢ Line widths
® Sample times

The first stage of code generation is compilation of the block diagram. This
compile stage is analogous to that of a C program. The C compiler carries out
type checking and preprocessing. Similarly, Simulink verifies that
input/output data types of block ports are consistent, line widths between
blocks are of the correct thickness, and the sample times of connecting blocks
are consistent.

Simulation Parameters and Code Generation

The Simulink engine typically derives signal attributes from a source block.
For example, the Inport block’s parameters dialog box specifies the signal
attributes for the block.

— Inport

Provide an input port for a subsystem or model. The 'S ample time!'
parameter may be uzed to specify the rate at which a signal enters the
spster.

=

Fart nurnber:

|1
Port dimenzions [-1 for dynamically sized):
IE

Sample time:
Joo

Data type: I double

|
|

Signal type: I comples

QK I Cancel | Help | Apply |

In this example, the Inport block has a port width of 3, a sample time of .01
seconds, the data type is double, and the signal is complex.

This figure shows the propagation of the signal attributes associated with the
Inport block through a simple block diagram.

1 double () (3) =| 2 double () (3) w1
0 | o

In1 Out
Gain

In this example, the Gain and Outport blocks inherit the attributes specified
for the Inport block.

Sample Time Propagation

Inherited sample times in source blocks (e.g., a root inport) can sometimes lead
to unexpected and unintended sample time assignments. Since a block may
specify an inherited sample time, information available at the outset is often
insufficient to compile a block diagram completely. In such cases, the Simulink
engine propagates the known or assigned sample times to those blocks that
have inherited sample times but which have not yet been assigned a sample

2-37

2 Code Generation and the Build Process

2-38

time. Thus, Simulink continues to fill in the blanks (the unknown sample
times) until sample times have been assigned to as many blocks as possible.
Blocks that still do not have a sample time are assigned a default sample time
according to the following rules:

1 Ifthe current system has at least one rate in it, the block is assigned the
fastest rate.

2 If no rate exists and the model is configured for a variable-step solver, the
block is assigned a continuous sample time (but fixed in minor time steps).
Note that Real-Time Workshop (with the exception of the S-function target)
does not currently support variable-step solvers.

3 Ifno rate exists and the model is configured for a fixed-step solver, the block
is assigned a discrete sample time of (T¢ - T;)/50, where T; is the simulation
start time and Ty is the simulation stop time. If T¢is infinity, the default
sample time is set to 0.2.

To ensure a completely deterministic model (one where no sample times are set
using the above rules), you should explicitly specify the sample time of all your
source blocks. Source blocks include root inport blocks and any blocks without
input ports. You do not have to set subsystem input port sample times. You
may want to do so, however, when creating modular systems.

An unconnected input implicitly sources ground. For ground blocks and ground
connections, the default sample time is derived from destination blocks or the
default rule.

All blocks have an inherited sample time (T = -1). They will all be assigned a
sample time of (T - T;)/50.

Block Execution Order

Once Simulink compiles the block diagram, it creates a model. rtw file
(analogous to an object file generated from a C file). The model . rtw file
contains all the connection information of the model, as well as the necessary

Simulation Parameters and Code Generation

signal attributes. Thus, the timing engine in Real-Time Workshop can
determine when blocks with different rates should be executed.

You cannot override this execution order by directly calling a block (in
hand-written code) in a model. For example, the disconnected_trigger model
below will have its trigger port source to ground, which may lead to all blocks
inheriting a constant sample time. Calling the trigger function, f (), directly
from user code will not work correctly and should never be done. Instead, you
should use a function-call generator to properly specify the rate at which f ()
should be executed, as shown in the connected_trigger model below.

Connected

A -
1 Disconnected Funetion-call Trigger

1 Trigger Generator

¥ ¥
0 0
In1 Out1 In1 Out1
Triggered Triggered
Subsystemn Subsystemn

Instead of the function-call generator, you could use any other block that can
drive the trigger port. Then, you should call the model’s main entry point to
execute the trigger function.

For multirate models, a common use of Real-Time Workshop is to build
individual models separately and then hand-code the I/O between the models.
This approach places the burden of data consistency between models on the
developer of the models. Another approach is to let Simulink and Real-Time
Workshop ensure data consistency between rates and generate multirate code
for use in a multitasking environment. The Real-Time Workshop interrupt
template and VxWorks support libraries provide blocks that support both
synchronous and asynchronous I/O via a double-buffering scheme. For a
description of the Real-Time Workshop libraries, see “Asynchronous Support”
on page 13-1 For more information on multirate code generation, see “Models
with Multiple Sample Rates” on page 8-1

Algebraic Loops Unsupported

Real-Time Workshop does not support models containing algebraic loops. An
algebraic loop exists whenever the output of a block having direct feedthrough

2-39

2 Code Generation and the Build Process

(such as Gain, Sum, Product, and Transfer fcn) is fed back as an input to the
same block. Simulink is often able to solve models that contain algebraic loops,
such as the diagram shown below.

I
¥

Sine Wave

Outt

2

i\ﬂl’
. 1
=
3

Constant

The code generator does not produce code that solves algebraic loops. This
restriction includes models that use Algebraic Constraint blocks in feedback
paths.

2-40

Selecting a Target Configuration

Selecting a Target Configuration

The process of generating target-specific code is controlled by three things:

® A system target file

* A template makefile

® A make command

The System Target File Browser lets you specify such a configuration in a
single step, choosing from a wide variety of ready-to-run configurations.

The System Target File Browser
To select a target configuration using the System Target File Browser:

Click the Real-Time Workshop tab of the Simulation Parameters dialog
box. The Real-Time Workshop pane appears.

Select Target configuration from the Category menu.

Click the Browse button next to the System target file field. This opens the
System Target File Browser. The browser displays a list of all currently
available target configurations. When you select a target configuration,
Real-Time Workshop automatically chooses the appropriate system target
file, template makefile, and make command.

Figure 2-11 shows the System Target File Browser with the generic
real-time target selected.

Double-click on the desired entry in the list of available configurations.
Alternatively, you can select the desired entry in the list and click OK.

2-41

2 Code Generation and the Build Process

-} System Target File Browser: F14rtw = o]

| Systen target f£ile | Description
asapz. tlc ASAM-ASAPZ Data Definition Target :J
drt.tlc DO%(4GW) Real-Time Target
ert.tlc ETW Embedded Coder
ert.tlc Visual C/CH++ Project Makefile only for the BTW Embedded Coder

Generic Real-Time Target
grt.tlc ¥isual C/C++ Project Makefile only for the "grt” target
grt malloc.tlc Generic Real-Time Target with dynamic memory allocation
grt malloc.tlc Visual C/C++ Project Makefile only for the "grt malloc™ target
upc55Sexp. tlc Embedded Target for Motorola MPCS555 (algorithm export)
wpc555pil. tlc Emhedded Target for Motorola MPCS555 (processor-in-the-loop)
wpc555re. tlc Emhedded Target for Motorola MPCS555 (real-time target)
osek_leo.tlc (Beta) LE/D (Lynx-Embedded 03EK) Real-Time Target
rsim. tlc Rapid Simulation Target
rtwin. tlc Real-Time Windows Target
rtwsfcn. tlc S-function Target
ti_ce000.tlc Target for Texas Instruments(tm) TM3320C5000 DSP
tornado. tlc Tornado (VxWorks) Real-Time Target
xpoctarget. tlc ®xPC Target

I

delection: |N:\rtw\chgrtigrt.tlc

()3 | Cancel |

Figure 2-11: The System Target File Browser

5 When you choose a target configuration, Real-Time Workshop automatically
chooses the appropriate system target file, template makefile, and make
command for the selected target, and displays them in the Real-Time
Workshop pane.

Available Targets

Table 2-1 lists all the supported system target files and their associated code
formats, and template makefiles. The table also gives references to relevant
manuals or chapters in this book. All of these targets are built using the
make_rtw make command.

2-42

Selecting a Target Configuration

Table 2-1: Targets Available from the System Target File Browser

Target/Code Format System Target File = Template Makefile Relevant
Chapters
Real-Time Workshop ert.tlc ert_default tmf Real-Time
Embedded Coder (PC Workshop
or UNIX) Embedded Coder
documentation
Real-Time Workshop ert.tlc ert watc.tmf Real-Time
Embedded Coder for Workshop
Watcom Embedded Coder
documentation
Real-Time Workshop ert.tlc ert_vc.tmf Real-Time
Embedded Coder for Workshop
Visual C/C++ Embedded Coder
documentation
Real-Time Workshop ert.tlc ert_msvc.tmf Real-Time
Embedded Coder for Workshop
Visual C/C++ Project Embedded Coder
Makefile documentation
Real-Time Workshop ert.tlc ert_bc.tmf Real-Time
Embedded Coder for Workshop
Borland Embedded Coder
documentation
Real-Time Workshop ert.tlc ert_lcc.tmf Real-Time
Embedded Coder for Workshop
LCC Embedded Coder
documentation
Real-Time Workshop ert.tlc ert_unix.tmf Real-Time
Embedded Coder for Workshop
UNIX Embedded Coder
documentation

2-43

2 Code Generation and the Build Process

2-44

Table 2-1: Targets Available from the System Target File Browser (Continued)

Target/Code Format System Target File Template Makefile Relevant
Chapters

Real-Time Workshop ert.tlc ert_tornado.tmf Real-Time

Embedded Coder for Workshop

Tornado (VxWorks) Embedded Coder
documentation

Generic Real-Time grt.tlc grt_default_tmf 3

for PC/UNIX

Generic Real-Time grt.tlc grt_watc.tmf 3

for Watcom

Generic Real-Time grt.tlc grt_vc.tmf 3

for Visual C/C++

Generic Real-Time grt.tlc grt_msvc.tmf 3

for Visual C/C++

Project

Makefile

Generic Real-Time grt.tlc grt_bc.tmf 3

for Borland

Generic Real-Time grt.tlc grt_lcc.tmf 3

for LCC

Generic Real-Time grt.tlc grt_unix.tmf 3

for UNIX

Generic Real-Time grt_malloc.tlc grt_malloc_default_tmf 3

(dynamic) for

PC/UNIX

Generic Real-Time grt_malloc.tlc grt_malloc_watc.tmf 3

(dynamic) for Watcom

Generic Real-Time grt_malloc.tlc grt_malloc_vc.tmf 3

(dynamic) for Visual
C/C++

Selecting a Target Configuration

Table 2-1: Targets Available from the System Target File Browser (Continued)

Target/Code Format System Target File Template Makefile Relevant
Chapters

Generic Real-Time grt_malloc.tlc grt_malloc_msvc.tmf 3

(dynamic) for Visual

C/C++ Project

Makefile

Generic Real-Time grt_malloc.tlc grt_malloc_bc.tmf 3

(dynamic) for Borland

Generic Real-Time grt_malloc.tlc grt_malloc lcc.tmf 3

(dynamic) for LCC

Generic Real-Time grt_malloc.tlc grt_malloc_unix.tmf 3

(dynamic) for UNIX

Rapid Simulation rsim.tlc rsim _default_ tmf 11

Target (default for PC

or UNIX)

Rapid Simulation rsim.tlc rsim_watc.tmf 11

Target for Watcom

Rapid Simulation rsim.tlc rsim_vc.tmf 11

Target for Visual

C/C++

Rapid Simulation rsim.tlc rsim_bc.tmf 11

Target for Borland

Rapid Simulation rsim.tlc rsim_lcc.tmf 11

Target for LCC

Rapid Simulation rsim.tlc rsim_unix.tmf 11

Target for UNIX

S-Function Target for rtwsfcn.tlc rtwsfcn_default_tmf 10

PC or UNIX

2-45

2 Code Generation and the Build Process

2-46

Table 2-1: Targets Available from the System Target File Browser (Continued)

Target/Code Format System Target File Template Makefile Relevant
Chapters

S-Function Target for ~ rtwsfcn.tlc rtwsfcn_watc.tmf 10

Watcom

S-Function Target for rtwsfcn.tlc rtwsfcn_vc.tmf 10

Visual C/C++

S-Function Target for =~ rtwsfcn.tlc rtwsfcn_bc.tmf 10

Borland

S-Function Target for =~ rtwsfcn.tlc rtwsfcn_lcc.tmf 10

LCC rtwsfcn_unix.tmf

Tornado (VxWorks) tornado.tlc tornado.tmf 12

Real-Time Target

Windows Real-Time rtwin.tlc win_watc.tmf Real-Time

Target for Watcom Windows Target
documentation

Windows Real-Time rtwin.tlc win_vc.tmf Real-Time

Target for Visual Windows Target

C/C++ documentation

Embedded Target for ti_c6000.tlc ti ¢6000.tmf Developer's Kit

TIC6000 DSP for Texas
Instruments DSP
documentation

xPC Target for xpctarget.tlc xpc_default tmf xPC Target

Watcom C/C++ or xpc_vc.tmf documentation

Visual C/C++ xpc_watc.tmf

DOS (4GW)! drt.tlc drt_watc.tmf 11 and 3

LE/O (Lynx osek_leo.tlc osek_leo.tmf Readme file in

embedded OSEK) matlabroot/rtw/

Real-Time Target1 c/osek_leo

Selecting a Target Configuration

Table 2-1: Targets Available from the System Target File Browser (Continued)

Target/Code Format System Target File Template Makefile Relevant
Chapters
ASAM-ASAP2 Data asap2.tlc asap2_generic.tmf Real-Time
Definition Target Workshop
Embedded Coder
documentation
ECRobot Target ECRobot.tlc ECRobot.tmf See matlabroot/
(ECRobot demo; extra toolbox/rtw/tar
hardware and gets/ECRobot/do
software required)1 cumentation/
Embedded Target for =~ mpc555exp.tlc mpc555exp. tmf Embedded Target
Motorola MPC555 mpc555exp_diab.tmf for Motorola
Developers Kit mpc555pil.tlc mpc555pil. tmf MPC555
mpC555pll_d iab.tmf documentation

mpcs55rt. tle mpc555rt . tmf

IThe LE/O, DOS, and ECRobot targets are included as examples only.

2-47

2 Code Generation and the Build Process

Making an Executable

Real-Time Workshop generates code into a set of source files that vary little
among different targets. Not all possible files will be generated for every model.
Some files are only created when the model includes subsystems or particular
types of data.

The file packaging of the Real-Time Workshop Embedded Coder differs slightly
(but significantly) from the file packaging described below. See the “Data
Structures and Code Modules” section in the Real-Time Workshop Embedded
Coder documentation for further information.

Generated Source Files

The following table summarizes the structure of source code generated by the
Real-Time Workshop. All code modules described are written to the build
directory within your current working directory. Figure 2-12 on page 2-50
summarizes the dependencies among these files.

Table 2-2: Real-Time Workshop File Packaging

File Description

model.c Contains entry points for all code implementing the model algorithm
(Md1Start, Md1lOutputs, MdlUpdate, MdlInitializeSizes,
MdlInitializeSampleTimes). Also contains model registration code.

model private.h Contains local defines and local data that are required by the model and
subsystems. This file is included by the genberated source files in the
model. You do not need to include model private.h when interfacing
hand-written code to a model.

model.h Defines model data structures and a public interface to the model entry
points and data structures. Also provides an interface to the real-time
model data structure (model rtM) via accessor macros. model.h is
included by subsystem .c files in the model.

If you are interfacing your hand-written code to generated code for one
or more models, you should include model . h for each model to which you
want to interface.

2-48

Making an Executable

Table 2-2: Real-Time Workshop File Packaging (Continued)

File

Description

model_data.c
(conditional)

model types.h

rtmodel.h

model_pt.c
(optional)

model bio.c
(optional)

model data.c is conditionally generated. It contains the declarations for
the parameters data structure and the constant block I/O data structure.
If these data structures are not used in the model, model_data.c is not
generated. Note that these structures are declared extern in model.h.

Provides forward declarations for the real-time model data structure and
the parameters data structure. These may be needed by function
declarations of reusable functions. model types.h is included by all the
generated header files in the model.

Contains #include directives required by static main program modules
such as grt_main.c and grt_malloc_main.c. Since these modules are
not created at code generation time, they include rt_model.h to access
model-specific data structures and entry points. If you create your own
main program module, take care to include rtmodel.h.

Provides data structures that enable a running program to access model
parameters without use of external mode. To learn how to generate and
use the model pt.c file, see “C API for Parameter Tuning” on

page 14-77.

Provides data structures that enable your code to access block outputs.
To learn how to generate and use the model bio.c file, see “Signal
Monitoring via Block Outputs” on page 14-70.

Ifyou have interfaced hand-written code to code generated by previous releases
of the Real-Time Workshop, you may need to remove dependencies on header
files that are no longer generated. Use #include model.h directives, and
remove #include directives referencing any of the following:

® model common.h (replaced by model types.h and model private.h)
® model export.h (replaced by model.h)
® model prm.h (replaced by model data.c)

® model reg.h (subsumed by model .c)

Real-Time Workshop generated source file dependencies are depicted in
Figure 2-12 on page 2-50. Arrows emitting from a file indicate the files it

2-49

2 Code Generation and the Build Process

2-50

includes. As the illustration notes, other dependencies exist, for example on
Simulink header files files tmw_types.h, simstruc_types.h, and optionally
ONnrtlibsrc.h, plus C library files. The diagram only maps inclusion relations
between files that are generated in the build directory.

The diagram shows that parent system header files (model .h) include all child
subsystem header files (subsystem.h). In more layered models, subsystems
similarly include their children’s header files, on down the model hierarchy. As
a consequence, subsystems are able to recursively “see” into all their
descendents’ subsystems, as well as to see into the root system (because every
subsystem.c includes model.h and model private.h).

model pr‘1vate h

model.c subsys tem.c model data.c

Y

Subsystem.h

rtmodel.his a +

dummy include model_types.h
file used only
for grt and v }
grt_malloc targets
model.h
rtmodel.h —

NOTE Files model.h, model private.hand subsystem.h also depend on Simulink
header files tmv_types.h, simstruct_types.h, and conditionally on rtlibsrc.h

Figure 2-12: Real-Time Workshop Generated File Dependencies

Compilation and Linking

After completing code generation, the build process determines whether or not
to continue and compile and link an executable program. This decision is
governed by the following parameters:

Making an Executable

® Generate code only option
When this option is selected, the build process always omits the make phase.
® Makefile-only target

The Visual C/C++ Project Makefile versions of the grt, grt_malloc, and
Real-Time Workshop Embedded Coder target configurations generate a
Visual C/C++ project makefile (model .mak). To build an executable, you must
open model.mak in the Visual C/C++ IDE and compile and link the model
code.

® HOST template makefile variable

The template makefile variable HOST identifies the type of system upon
which your executable is intended to run. The HOST variable can take on one
of three possible values: PC, UNIX, or ANY.

By default, HOST is set to UNIX in template makefiles designed for use with

UNIX (such as grt_unix.tmf), and to PC in the template makefiles designed

for use with development systems for the PC (such as grt_vc.tmf).

If Simulink is running on the same type of system as that specified by the

HOST variable, then the executable is built. Otherwise:

= If HOST = ANY, an executable is still built. This option is useful when you
want to cross-compile a program for a system other than the one Simulink
is running on.

= Otherwise, processing stops after generating the model code and the
makefile; the following message is displayed on the MATLAB command
line.

Make will not be invoked - template makefile is for a different
host

2-51

2 Code Generation and the Build Process

2-52

Choosing and Configuring Your Compiler

The Real-Time Workshop build process depends upon the correct installation
of one or more supported compilers. Note that compiler, in this context, refers
to a development environment containing a linker and make utility, in addition
to a high-level language compiler.

The build process also requires the selection of a template makefile. The
template makefile determines which compiler will be run, during the make
phase of the build, to compile the generated code.

This section discusses how to install a compiler and choose an appropriate
template makefile, on both Windows and UNIX systems.

Choosing and Configuring Your Compiler on Windows

On Windows, you must install one or more supported compilers, In addition,
you must define an environment variable associated with each compiler.Make
sure that your compiler is installed as described in “Third-Party Compiler
Installation on Windows” on page 1-11.

You can select a template makefile that is specific to your compiler. For
example, grt_bc.tmf designates the Borland C/C++ compiler, and grt_vc. tmf
designates the Visual C/C++ compiler.

Alternatively, you can choose a default template makefile that will select the
default compiler for your system. The default compiler is the compiler
MATLAB uses to build MEX-files. You can set up the default compiler by using
the MATLAB mex command as shown below.

mex setup

See the “External Interfaces/API” in the MATLAB online documentation for
information on the mex command.

Default template makefiles are named target_default_tmf. For example, the
default template makefile for the generic real-time (GRT) target is
grt_default_tmf.

The build process uses the following logic to locate a compiler for the generated
code:

1 If a specific compiler is named in the template makefile, the build process
uses that compiler.

Choosing and Configuring Your Compiler

2 Ifthe template makefile designates a default compiler (as in
grt_default_tmf), the build process uses the same compiler as those used
for building C MEX-files.

3 If no default compiler is established, the build process examines
environment variables which define the path to installed compilers, and
selects the first compiler located. The variables are searched in the following
order:

= MSDevDir or DEVSTUDIO (defining the path to the Microsoft Visual C/C++)
= WATCOM (defining the path to the Watcom C/C++ compiler)
= BORLAND (defining the path to the Borland C/C++ compiler)

4 If none of the above environment variables is defined, the build process
selects the 1cc compiler, which is shipped and installed with MATLAB.

Compile/Build Options for Visual C/C++. Real-Time Workshop offers two sets of
template makefiles designed for use with Visual C/C++.

To compile under Visual C/C++ and build an executable within the Real-Time
Workshop build process, use one of the target_vc.tmf template makefiles:

® ert_vc.tmf

® grt_malloc_vc.tmf
® grt_vc.tmf

® rsim_vc.tmf

Alternatively, you can choose to create a project makefile (model .mak) suitable
for use with the Visual C/C++ IDE. In this case, you must compile and link your
code within the Visual C/C++ environment. To create a Visual C/C++ project
makefile, choose one of the Visual C/C++ Project Makefile versions of the grt,
ert, or grt_malloc target configurations. These configurations use the
target_msvc.tmf template makefiles:

® ert_msvc.tmf
® grt_malloc_msvc.tmf
® grt_msvc.tmf

Choosing and Configuring Your Compiler On UNIX

On UNIX, the Real-Time Workshop build process uses the default compiler. cc
is the default on all platforms except SunOS, where gcc is the default.

2-53

2 Code Generation and the Build Process

2-54

You should choose the UNIX-specific template makefile that is appropriate to
your target. For example, grt_unix.tmf is the correct template makefile to
build a generic real-time program under UNIX.

Available Compiler/Makefile/Target Configurations

To determine which template makefiles are appropriate for your compiler and
target, see Table 2-1, Targets Available from the System Target File Browser,
on page 2-43.

Template Makefiles and Make Options

Template Makefiles and Make Options

Real-Time Workshop includes a set of built-in template makefiles that are
designed to build programs for specific targets.

There are two types of template makefiles:

o Compiler-specific template makefiles are designed for use with a particular
compiler or development system.

By convention, compiler-specific template makefiles are named according to
the target and compiler (or development system). For example, grt_vc.tmf
is the template makefile for building a generic real-time program under
Visual C/C++; ert_lcc.tmf is the template makefile for building a
Real-Time Workshop Embedded Coder program under the LCC compiler.

® Default template makefiles make your model designs more portable, by
choosing the correct compiler-specific makefile and compiler for your
installation. “Choosing and Configuring Your Compiler” on page 2-52
describes the operation of default template makefiles in detail.

Default template makefiles are named target default tmf. For example,
grt_default_ tmf is the default template makefile for building a generic
real-time program; ert_default tmf is the default template makefile
building a Real-Time Workshop Embedded Coder program.

You can supply options to makefiles via arguments to the Make command
field of the Target configuration category of the Real-Time Workshop tab of
the Simulation Parameters dialog. Append the arguments after make_rtw (or
make_xpc or other make command), as in the following example.

make_rtw OPTS="-DMYDEFINE=1"

The syntax for make command options differs slightly for different compilers.

Compiler-Specific Template Makefiles

This section documents the available compiler-specific template makefiles and
common options you can use with each. Complete details on the structure of
template makefiles are provided in “Template Makefiles” on page 14-28. This
information is provided for those who want to customize template makefiles.

2-55

2 Code Generation and the Build Process

2-56

Template Makefiles for UNIX

® ert_unix.tmf

® grt_malloc_unix.tmf
® grt_unix.tmf

® rsim_unix.tmf

® rtwsfcn_unix.tmf

The template makefiles for UNIX platforms are designed to be used with GNU
Make. These makefile are set up to conform to the guidelines specified in the
IEEE Std 1003.2-1992 (POSIX) standard.

You can supply options via arguments to the make command.

® OPTS — User-specific options, for example,
make_rtw OPTS="-DMYDEFINE=1"

® OPT_OPTS — Optimization options. The default optimization option is -0. To
turn off optimization and add debugging symbols, specify the -g compiler
switch in the make command, for example,

make _rtw OPT_OPTS="-g"

For additional options, see the comments at the head of each template
makefile.

Template Makefiles for Visual C/C++

Real-Time Workshop offers two sets of template makefiles designed for use
with Visual C/C++.

To build an executable within Real-Time Workshop build process, use one of
the target vc.tmf template makefiles:

® ert_vc.tmf

® grt_malloc_vc.tmf
® grt_vc.tmf

® rsim_vc.tmf

® rtwsfcn_vc.tmf

You can supply options via arguments to the make command.

® OPTS — User-specific options, for example,

Template Makefiles and Make Options

make_rtw OPTS="-DMYDEFINE=1"

® OPT_OPTS — Optimization options. The default optimization option is -0t. To
turn off optimization and add debugging symbols, specify the -Zd compiler
switch in the make command.

make_rtw OPT_OPTS="-Zd"

For additional options, see the comments at the head of each template
makefile.

To create a Visual C/C++ project makefile (model.mak) without building an
executable, use one of the target_msvc.tmf template makefiles:

® ert_msvc.tmf
® grt_malloc_msvc.tmf
® grt_msvc.tmf

These template makefiles are designed to be used with nmake, which is bundled
with Visual C/C++.

You can supply the following options via arguments to the nmake command:

® OPTS — User-specific options, for example,
make_rtw OPTS="/D MYDEFINE=1"

For additional options, see the comments at the head of each template
makefile.

Template Makefiles for Watcom C/C++

Note As of this printing, the Watcom C compiler is no longer available from
the manufacturer. Real-Time Workshop continues to ship with
Watcom-related template makefiles at this time. However, this policy may be
subject to change in the future.

® drt_watc.tmf

® ert_watc.tmf

® grt_malloc_watc.tmf
® grt_watc.tmf

® rsim_watc.tmf

2-57

2 Code Generation and the Build Process

2-58

® rtwsfcn_watc.tmf
® win_watc.tmf
Real-Time Workshop provides template makefiles to create an executable for

Windows using Watcom C/C++. These template makefiles are designed to be
used with wmake, which is bundled with Watcom C/C++.

You can supply options via arguments to the make command. Note that the
location of the quotes is different from the other compilers and make utilities
discussed in this chapter:

® OPTS — User specific options, for example,
make_rtw "OPTS=-DMYDEFINE=1"

® OPT_OPTS — Optimization options. The default optimization option is -oxat.
To turn off optimization and add debugging symbols, specify the -d2
compiler switch in the make command, for example,

make_rtw "OPT_OPTS=-d2"

For additional options, see the comments at the head of each template
makefile.

Template Makefiles for Borland C/C++

® ert_bc.tmf

® grt_bc.tmf

® grt_malloc_bc.tmf
® rsim_bc.tmf

® rtwsfcn_bc.tmf

Real-Time Workshop provides template makefiles to create an executable for
Windows using Borland C/C++.

You can supply these options via arguments to the make command:

® OPTS — User-specific options, for example,
make_rtw OPTS="-DMYDEFINE=1"

® OPT_OPTS — Optimization options. Default is none. To turn off optimization
and add debugging symbols, specify the -v compiler switch in the make
command.

make_rtw OPT_OPTS="-v"

Template Makefiles and Make Options

For additional options, see the comments at the head of each template
makefile.

Template Makefiles for LCC

® ert_lcc.tmf

® grt_lcc.tmf

® grt_malloc_lcc.tmf
® rsim_lcc.tmf

® rtwsfcn_lcc.tmf

Real-Time Workshop provides template makefiles to create an executable for
Windows using LCC compiler Version 2.4 and GNU Make (gmake).

You can supply options via arguments to the make command:

® OPTS — User-specific options, for example,
make_rtw OPTS="-DMYDEFINE=1"

® OPT_OPTS — Optimization options. Default is none. To enable debugging,
specify -g4 in the make command:

make_rtw OPT_OPTS="-g4"

For additional options, see the comments at the head of each template
makefile.

2-59

2 Code Generation and the Build Process

2-60

Configuring the Generated Code via TLC

This section covers features of the Real-Time Workshop Target Language
Compiler that help you to fine-tune your generated code. To learn more about
TLC, please see the Target Language Compiler Reference Guide.

Target Language Compiler Variables and Options

The Target Language Compiler supports extended code generation variables
and options in addition to those included in the code generation options
categories of the Real-Time Workshop pane.

There are two ways to set TLC variables and options:

¢ Assigning TLC variables in the system target file

® Entering TLC options or variables into the System Target File field on the
Real-Time Workshop tab of the Simulation Parameters dialog.

Assigning Target Language Compiler Variables
The %assign statement lets you assign a value to a TLC variable, as in

%sassign MaxStackSize = 4096

This is also known as creating a parameter name/ parameter value pair.

The %assign statement is described in the Target Language Compiler
Reference Guide. It is recommended that you write your %assign statements
in the Configure RTW code generation settings section of the system target
file.

Configuring the Generated Code via TLC

The following table lists the code generation variables you can set with the

%assign statement.

Table 2-3: Target Language Compiler Optional Variables

Variable

Description

MaxStackSize=N

MaxStackVariableSize=N

WarnNonSaturatedBlocks=
value

When Local block outputs is enabled,
the total allocation size of local variables
that are declared by all functions in the
entire model may not exceed
MaxStackSize (in bytes). N can be any
positive integer. The default value for
MaxStackSize is rtInf, i.e. unlimited
stack size.

When Local block outputs is enabled, this
limits the size of any local variable declared
in a function to N bytes, where N>0. A
variable whose size exceeds
MaxStackVariableSize will be allocated in
global, rather than local, memory

Flag to control display of overflow warnings
for blocks that have saturation capability,
but have it turned off (unchecked) in their
dialog. These are the options:

® 0 — no warning is displayed

¢ 1 — displays one warning for the model
during code generation

e 2 — displays one warning that contains a
list of all offending blocks

2-61

2 Code Generation and the Build Process

Table 2-3: Target Language Compiler Optional Variables (Continued)

Variable Description

BlockIOSignals=value Supports monitoring signals in a running
model. See “Signal Monitoring via Block
Outputs” on page 14-70. Setting the
variable causes the model bio.c file to be
generated. These are the options:

® 0 — deactivates this feature

® 1 — creates model_bio.c

ParameterTuning=value Setting the variable to 1 causes a
parameter tuning file (model pt.c) to be
generated. model pt.c contains data
structures that enable a running program
to access model parameters independent of
external mode. See “C API for Parameter
Tuning” on page 14-77.

Setting Target Language Compiler Options

You can enter TLC options directly into the System target file field in the
Target configuration category of the Real-Time Workshop tab of the
Simulation Parameters dialog, by appending the options and arguments to
the system target filename. This is equivalent to invoking the Target Language
Compiler with options on the MATLAB command line.

The common options are shown in the table below.

Table 2-4: Target Language Compiler Options

Option Description

—Ipath Adds path to the list of paths in which to search
for target files (.t1c files).

-m[N]|a] Maximum number of errors to report when an
error is encountered (default is 5). For example,
-m3 specifies that at most three errors will be
reported. To report all errors, specify —-ma.

2-62

Configuring the Generated Code via TLC

Table 2-4: Target Language Compiler Options

Option

Description

—-d[g|n]|o]

—aVariable=val

Specifies debug mode (generate, normal, or
off). Default is of f. When —dg is specified,

a .log file is create for each of your TLC files.
When debug mode is enabled (i.e., generate or
normal), the Target Language Compiler displays
the number of times each line in a target file is
encountered.

Equivalent to the TLC statement
%assign Variable = val

Note: It is recommended that you use %assign
statements in the TLC files, rather than the -a
option.

2-63

2 Code Generation and the Build Process

2-64

Generated Code Formats

This chapter summarizes distinguishing characteristics of code formats that Real-Time Workshop
generates:

Introduction (p. 3-2) Explains the concept of code formats and relationship to
targets.

Choosing a Code Format for Your Discusses the applicability and limitations of code

Application (p. 3-3) formats and targets with regard to types of applications

Real-Time Code Format (p. 3-6) Describes code generation for building nonembedded
applications

Real-Time malloc Code Format (p. 3-8) Describes code generation for building nonembedded
applications with dynamic allocation

S-Function Code Format (p. 3-10) Describes code generation for building S-function targets

Embedded C Code Format (p. 3-11) Describes code generation for building embedded
applications

3 Generated Code Formats

3-2

Introduction

Real-Time Workshop provides four different code formats. Each code format
specifies a framework for code generation suited for specific applications.

The four code formats and corresponding application areas are:

® Real-time: Rapid prototyping

® Real-time malloc: Rapid prototyping

e S-function: Creating proprietary S-function .d11 or MEX-file objects, code
reuse, and speeding up your simulation

¢ Embedded C: Deeply embedded systems

This chapter discusses the relationship of code formats to the available target
configurations, and factors you should consider when choosing a code format
and target. This chapter also summarizes the real-time, real-time malloc,
S-function, and embedded C code formats.

Choosing a Code Format for Your Application

Choosing a Code Format for Your Application

Your choice of code format is the most important code generation option. The
code format specifies the overall framework of the generated code and
determines its style.

When you choose a target, you implicitly choose a code format. Typically, the
system target file will specify the code format by assigning the TLC variable
CodeFormat. The following example is from ert.tlc.

%assign CodeFormat = "Embedded-C"

If the system target file does not assign CodeFormat, the default is RealTime (as
in grt.tlc).

If you are developing a custom target, you must consider which code format is
best for your application and assign CodeFormat accordingly.

Choose the real-time or real-time malloc code format for rapid prototyping. If
your application does not have significant restrictions in code size, memory
usage, or stack usage, you may want to continue using the generic real-time
(GRT) target throughout development. The real-time format is the most
comprehensive code format and supports almost all the built-in blocks. It is
also capable of executing in “hard real time” (however, if the hard execution
time constraints are not satisfied, a catastrophic system failure occurs). For
further information on satisfying time constraints in both singletasking and
multitasking environments, see “Models with Multiple Sample Rates” on
page 8-1.

If your application demands that you limit source code size, memory usage, or
maintain a simple call structure, then you should choose the Real-Time
Workshop Embedded Coder target, which uses the embedded C format.

Finally, you should choose the S-function format if you are not concerned about
RAM and ROM usage and want to:

¢ Use a model as a component, for scalability

¢ Create a proprietary S-function .d11 or MEX-file object

¢ Interface the generated code using the S-function C API

® Speed up your simulation

3-3

3 Generated Code Formats

Table 3-1 summarizes the various options available for each Real-Time
Workshop code format/target, noting exceptions below.

Table 3-1: Features Supported by Real-Time Workshop Targets and Code Formats

Feature GRT Real- RTW DOS Torn- S- RSIM RT xPC TI MPC
time Embe ado Func Win DSP 555
malloc dded

Coder

Static mem. X X X X X X X X X
allocation

Dynamic X X X X
mem.
allocation

Continuous X X X X X X X X
time

C MEX X X X X X X X X
S-functions
(noninlined)

Any X X X X X X X X X X X
S-function

(inlined)

Minimize X X
RAM /ROM

usage

Supports X X X X X X X
external
mode

Intended for X X X X X X X

rapid

prototyping

Production X X X X3
code

Choosing a Code Format for Your Application

Table 3-1: Features Supported by Real-Time Workshop Targets and Code Formats (Continued)

Feature GRT

RTW DOS
Embe

dded

Coder

Real-
time
malloc

RSIM RT
Win

xPC TI
DSP

MPC
555

Torn- S-
ado Func

Batch
parameter
tuning and
Monte Carlo
methods

Executes in x1
hard real
time

Non X
real-time
executable
included

Multiple
instances of a
model (no
Stateflow
blocks in
model)

Supports
variable-step
solvers

x1 x1 X

IThe default GRT, GRT malloc, and ERT rt_main files emulate execution of hard real time, and
when explicitly connected to a real-time clock execute in hard real-time.

2Except MPC555 (processor-in-the-loop) and MPC555 (algorithm export) targets

3Exccept MPC555 (algorithm export) targets

3 Generated Code Formats

Real-Time Code Format

The real-time code format (corresponding to the generic real-time target) is
useful for rapid prototyping applications. If you want to generate real-time
code while iterating model parameters rapidly, you should begin the design
process with the generic real-time target. The real-time code format supports:
® Continuous time

¢ Continuous states

® C MEX S-functions (inlined and noninlined)

For more information on inlining S-functions, see the Target Language
Compiler Reference Guide.

The real-time code format declares memory statically, that is, at compile time.

Unsupported Blocks

The real-time format does not support the following built-in user-defined
blocks:

e MATLAB Fen (note that Simulink Fen blocks are supported)

® S-Function — M-file S-functions, Fortran S-functions, or C MEX S-functions
that call into MATLAB (Simulink Fcn calls are supported).

System Target Files

® drt.tlc — DOS real-time target

® grt.tlc — Generic real-time target

® osek_leo.tlc — Lynx-Embedded OSEK target (example only)
® rsim.tlc — Rapid simulation target

¢ tornado.tlc — Tornado (VxWorks) real-time target

Template Makefiles
® drt.tmf
® grt

= grt_bc.tmf — Borland C

Real-Time Code Format

grt_vc.tmf — Visual C
grt_watc.tmf — Watcom C
grt_lcc.tmf — LCC compiler
grt_unix.tmf — UNIX host

osek_leo.tmf
rsim

rsim_bc.tmf — Borland C
rsim_vc.tmf — Visual C
rsim_watc.tmf — Watcom C
rsim_lcc.tmf — LCC compiler
rsim_unix.tmf — UNIX host

tornado.tmf

win_watc.tmf

3-7

3 Generated Code Formats

3-8

Real-Time malloc Code Format

The real-time malloc code format (corresponding to the generic real-time
malloc target) is very similar to the real-time code format. The differences are:

® Real-time malloc declares memory dynamically.

Note that for blocks provided by the MathWorks, malloc calls are limited to
the model initialization code. Generated code is designed to be free from
memory leaks, provided that the model termination function is called.

Real-time malloc allows you to multiply instance the same model with each
instance maintaining its own unique data.

® Real-time malloc allows you to combine multiple models together in one
executable. For example, to integrate two models into one larger executable,
real-time malloc maintains a unique instance of each of the two models. If
you do not use the real-time malloc format, the Real-Time Workshop will not
necessarily create uniquely named data structures for each model,
potentially resulting in name clashes.

grt_malloc_main.c, the main routine for the generic real-time malloc
(grt_malloc) target, supports one model by default. See “Combining
Multiple Models” on page 14—-103 for information on modifying
grt_malloc_main to support multiple models. grt_malloc_main.c islocated
in the directory matlabroot/rtw/c/grt_malloc.

Unsupported Blocks

The real-time malloc format does not support the following built-in blocks, as
shown:

¢ Functions & Tables

= MATLAB Fen (note that Simulink Fen blocks are supported)

= S-Function — M-file S-functions, Fortran S-functions, or C MEX
S-functions that call into MATLAB (Simulink Fcn calls are supported).

System Target Files

® grt_malloc.tlc
® tornado.tlc — Tornado (VxWorks) real-time target

Real-Time malloc Code Format

Template Makefiles

® grt_malloc
= grt_malloc_bc.tmf — Borland C

= grt_malloc_vc.tmf — Visual C

grt_malloc_watc.tmf — Watcom C

grt_malloc_lcc.tmf — LCC compiler
grt_malloc_unix.tmf — UNIX host
® tornado.tmf

3-9

3 Generated Code Formats

3-10

S-Function Code Format

The S-function code format (corresponding to the S-Function Target) generates
code that conforms to the Simulink C MEX S-function API. Using the
S-Function Target, you can build an S-function component and use it as an
S-Function block in another model.

The S-function code format is also used by the Simulink Accelerator to create
the Accelerator MEX-file.

In general you should not use the S-function code format in a system target file.
However, you may need to do special handling in your inlined TLC files to
account for this format. You can check the TLC variable CodeFormat to see if
the current target is a MEX-file. If CodeFormat = "S-Function and the TLC
variable Accelerator is set to 1, the target is a Simulink Accelerator MEX-file.

See Chapter 10, “The S-Function Target” for further information.

Embedded C Code Format

Embedded C Code Format

The embedded C code format corresponds to the Real-Time Workshop
Embedded Coder target. This code format includes a number of memory-saving
and performance optimizations. See the Real-Time Workshop Embedded Coder
documentation for full details.

3-11

3 Generated Code Formats

3-12

Building Subsystems

This chapter describes how to generate code for atomic and conditionally executed subsystems. Topics
covered in detail include the following:

Nonvirtual Subsystem Code Discusses ways to generate separate code modules from
Generation (p. 4-2) nonvirtual subsystems

Generating Code and Executables from Describes how to generate and build a stand-alone
Subsystems (p. 4-15) executable from a subsystem

4 Building Subsystems

Nonvirtual Subsystem Code Generation

Real-Time Workshop allows you to control how code is generated for any
nonvirtual subsystem. The categories of nonvirtual subsystems are:

¢ Conditionally executed subsystems: execution depends upon a control signal
or control block. These include triggered subsystems, enabled subsystems,
action and iterator subsystems, subsystems that are both triggered and
enabled, and function call subsystems. See Using Simulink for information
on conditionally executed subsystems.

® Atomic subsystems: Any virtual subsystem can be declared atomic (and
therefore nonvirtual) via the Treat as atomic unit option in the Block
Parameters dialog.

See Using Simulink, and run the s1_subsys_semantics demo for further
information on nonvirtual subsystems and atomic subsystems.

You can control the code generated from nonvirtual subsystems as follows:

® You can instruct Real-Time Workshop to generate separate functions, within
separate code files, for selected nonvirtual systems. You can control both the
names of the functions and of the code files generated from nonvirtual
subsystems.

® You can cause multiple instances of a subsystem to generate reusable code,
that is, as a single re-entrant function, instead of replicating the code for
each instance of a subsystem or each time it is called.

® You can generate inlined code from selected nonvirtual subsystems within
your model. When you inline a nonvirtual subsystem, a separate function
call is not generated for the subsystem.

Nonvirtual Subsystem Code Generation Options

For any nonvirtual subsystem, you can choose the following code generation
options from the RTW system code pop-up menu in the subsystem Block
parameters dialog:

® Auto: This is the default option, and provides the greatest flexibility in most
situations. See “Auto Option” below.

® Inline: This option explicitly directs Real-Time Workshop to inline the
subsystem unconditionally.

4-2

Nonvirtual Subsystem Code Generation

® Function: This option explicitly directs Real-Time Workshop to generate a
separate function with no arguments, and (optionally) place the subsystem
in a separate file. You can name the generated function and file. As functions
created with this option rely on global data, they are not re-entrant.

® Reusable function: Generates a function with arguments, that allows the
subsystem’s code to be shared by other instances of it in the model. To enable
sharing, Real-Time Workshop must be able to determine (via checksums)
that subsystems are identical. The generated function will have arguments
for block inputs and outputs, continuous states, parameters, etc.

The sections below further discuss the Auto, Inline, Function, and Reusable
function options.

Auto Option

The Auto option is the default, and is generally appropriate. Auto causes
Real-Time Workshop to inline the subsystem when there is only one instance
of it in the model. When multiple instances of a subsystem exist, the Auto
option will result in a single copy of the function whenever possible (as a
reusable function). Otherwise, the result will be as though you selected Inline
(except for function call subsystems with multiple callers, which will be
handled as if you specified Function). Choose Inline to always inline
subsystem code, or Function when you specifically want to generate a separate
function without arguments for each instance, optionally in a separate file.

Note When you want multiple instances of a subsystem to be represented as
one reusable function, you may designate each one of them as Auto or as
Reusable function. It is best to use one or the other, as using both will create
two reusable functions, one for each designation. The outcomes of these
choices will differ only when reuse is not possible.

To use the Auto option:

1 Select the subsystem block. Then select Subsystem parameters from the

Simulink Edit menu. The Block Parameters dialog opens, as shown below.

Alternatively, you can open the Block Parameters dialog by:

= Shift-double-clicking on the Subsystem block

4-3

4 Building Subsystems

= Right-clicking on the Subsystem block and selecting Block parameters
from the pop-up menu.

2 If the subsystem is virtual, select Treat as atomic unit as shown in the
dialog box below. This makes the subsystem nonvirtual, and the RTW
system code option becomes enabled.

If the system is already nonvirtual, the RTW system code option is already
enabled.

3 Select Auto from the RTW system code pop-up menu as shown below.

4 Click Apply and close the dialog.

Select the zettings for the subsystem block.

=

¥ Show port labels

Bead/wiite permissions; | ReadWwrite j

Mame of emar callback function:

¥ Treat as atomic unit

RT% spstem code: IAuto j
e mehion name aptans: IAuto j
FurREtEn ranmes

B file imame optiors: IAuto j

B ile mame [ho ertension]

Iatomic

QK I Cancel | Help | Apply |

Figure 4-1: Auto Code Generation Option for a Nonvirtual Subsystem

Auto Optimization for Special Cases. Rather than reverting to Inline, the Auto
option will optimize code in special situations in which identical subsystems
contain other identical subsystems, by both reusing and inlining generated
code. Suppose a model, such as schematized in Figure 4-2, contains identical
subsystems Al and A2. A1l contains subsystem B1, and A2 contains subsystem
B2, which are themselves identical. In such cases, the Auto option will cause

4-4

Nonvirtual Subsystem Code Generation

one function will be generated which will be called for both A1 and A2, and this
function will contain one piece of inlined code to execute B1 and B2, insuring
that the resulting code will run as efficiently as possible.

Special Case Optimization:

When B1=B2 and A1=A2, selecting the Auto
option inlines code for B within code for function A

O—>—> B1 |—P»

A1

O—»—» B2

A2

Figure 4-2: Reuse of Identical Nested Subsystems with the Auto Option

Inline Option

As noted above, you can choose to inline subsystem code when the subsystem
is nonvirtual (virtual subsystems are always inlined).

Exceptions fo Inlining. Note that there are certain cases in which Real-Time
Workshop will not inline a nonvirtual subsystem, even though the Inline
option is selected. These cases are:

¢ If the subsystem is a function-call subsystem that is called by a noninlined
S-function, the Inline option is ignored. Noninlined S-functions make such
calls via function pointers; therefore the function-call subsystem must
generate a function with all arguments present.

¢ In a feedback loop involving function-call subsystems, Real-Time Workshop
will force one of the subsystems to be generated as a function instead of
inlining it. Real-Time Workshop selects the subsystem to be generated as a
function based on the order in which the subsystems are sorted internally.

¢ If a subsystem is called from an S-function block that sets the option
SS_OPTION_FORCE_NONINLINED FCNCALL to TRUE, it will not be inlined. This

4-5

4 Building Subsystems

may be the case when user-defined Asynchronous Interrupt blocks or Task
Synchronization blocks are required. Such blocks must be generated as
functions. The VxWorks Asynchronous Interrupt and Task Synchronization
blocks, shipped with Real-Time Workshop, use the
SS_OPTION_FORCE_NONINLINED_ FCNCALL option.

To generate inlined subsystem code:

1 Select the subsystem block. Then select Subsystem parameters from the
Simulink Edit menu. The Block Parameters dialog opens, as shown in
Figure 4-3.

Alternatively, you can open the Block Parameters dialog by:

= Shift-double-clicking on the Subsystem block

= Right-clicking on the Subsystem block and selecting Block parameters
from the pop-up menu.

2 If the subsystem is virtual, select Treat as atomic unit as shown in
Figure 4-3. This makes the subsystem atomic, and the RTW system code
pop-up menu becomes enabled.

If the system is already nonvirtual, the RTW system code menu is already
enabled.

3 Select Inline from the RTW system code menu as shown in Figure 4-3.

4 Click Apply and close the dialog.

4-6

Nonvirtual Subsystem Code Generation

— Subspstem

Select the zettings for the subsystem block.

=
F

¥ Show port labels

FieadAwiite permissions: | Readwiite j

Mame of emar callback function:

¥ Treat as atomic unit

RT system code: IInIine d

s fumetion name aptiarns: IAuto d

BT funetion namme:

BT file: mame aptions: IAuto d

B ile mame [ho extension]:

QK. | Cancel | Help | Apply |

Figure 4-3: Inlined Code Generation for a Nonvirtual Subsystem

When you generate code from your model, Real-Time Workshop writes inline
code within model . c (or in its parent system’s source file) to perform subsystem
computations. You can identify this code by system/block identification tags,
such as the following.

/* Atomic SubSystem Block: <Root>/AtomicSubsysi */

See“Tracing Generated Code Back to Your Simulink Model” in Chapter 2 for
further information on system/block identification tags.

Function Option

Choosing the function option (or Reusable function) lets you direct
Real-Time Workshop to generate a separate function and (optionally) a
separate file for the subsystem. When you select the Function option, two
additional options are enabled:

¢ The RTW function name options menu lets you control the naming of the
generated function.

4-7

4 Building Subsystems

¢ The RTW file name options menu lets you control the naming of the
generated file (if a separate file is generated).

Figure 4-4 shows the Block Parameters dialog with the Function option
selected.

RTW Function Name Options Menu. This menu offers the following choices, but note
that the resulting identifiers are also affected by which General code
appearance options are in effect for the model:

® Auto: By default, Real-Time Workshop assigns a unique function name using
the default naming convention: model subsystem(),where subsystemis the
name of the subsystem (or that of an identical one when code is being
reused). When the Include system hierarchy number in identifiers option
of the General code appearance options is selected, a sequential identifier
(s0, s1,...sn)assigned by Simulink and prefixed to the model name, e.g.
sn_model_subsystem(). When the Prefix model name to global identifiers
option of the General code appearance options is not selected, the above
generic function identifier will take the form of sn_subsystem().

® Use subsystem name: Real-Time Workshop uses the subsystem name as the
function name. The General code appearance options Prefix model name
to global identifiers option setting also affects the resulting identifiers.

Note When a subsystem is a library block, the Use subsystem name option
will cause its function identifier (and filename, see below) to be that of the
library block, regardless of the name(s) used for that subsystem in the model.

® User specified: When this option is selected, the RTW function name text
entry field is enabled. Enter any legal function name. Note that the function
name must be unique, and the General code appearance options settings
are ignored for the function.

RTW File Name Options Menu. This menu offers the following choices:

® Use subsystem name: Real-Time Workshop generates a separate file, using
the subsystem (or library block) name as the filename.

4-8

Nonvirtual Subsystem Code Generation

e Use function name: Real-Time Workshop generates a separate file, using
the function name (as specified by the RTW function name options) as the
filename.

® User specified: When this option is selected, the RTW file name (no
extension) text entry field is enabled. Real-Time Workshop generates a
separate file, using the name you enter as the filename. Enter any filename
desired, but do not include the .c (or any other) extension. This filename
need not be unique.

Note While a subsytem source filename need not be unique, you must avoid
giving nonunique names that result in cyclic dependencies (e.g, sys_a.h
includes sys_b.h, sys_b.hincludes sys_c.h, and sys_c.h includes sys_a.h).

¢ Auto: Real-Time Workshop does not generate a separate file for the
subsystem. Code generated from the subsystem is generated within the code
module generated from the subsystem’s parent system. If the subsystem’s
parent is the model itself, code generated from the subsystem is generated
within model.c.

To generate both a separate subsystem function and a separate file:

1 Select the subsystem block. Then select Subsystem parameters from the
Simulink Edit menu, to open the Block Parameters dialog.
Alternatively, you can open the Block Parameters dialog by:

= Shift-double-clicking on the Subsystem block

= Right-clicking on the Subsystem block and selecting Block parameters
from the pop-up menu.

2 If the subsystem is virtual, select Treat as atomic unit as shown in
Figure 4-4. This makes the subsystem atomic, and the RTW system code
menu becomes enabled.

If the system is already nonvirtual, the RTW system code menu is already
enabled.

3 Select Function from the RTW system code menu as shown in Figure 4-4.

4-9

4 Building Subsystems

4 Set the function name, using the RTW function name options described in
“RTW Function Name Options Menu” on page 4-8.

5 Set the filename, using any RTW file name option other than Auto (options
are described in “RTW File Name Options Menu” on page 4-8).

Figure 4-4 shows the use of the UserSpecified filename option.

6 Click Apply and close the dialog.

— Subspst

Select the zettings for the subsystem block.

=

¥ Show port labels

FeadAwiite permissions: | Readwiite j

Mame of emar callback function:

¥ Treat as atomic unit

RT'w spstem code: IFunction d

RT' function name options: IAuto d

BT function name:

RT'% file name options: Iuser specified j

RT'w file name [no extension]:
IA_S eparate_File

QK I Cancel | Help | Apply |

Figure 4-4: Subsystem Function Code Generation
with Separate User-Defined File Name

Reusable Function Option

The difference between functions and reusable functions is that the latter have
data passed to them as arguments (enabling them to be re-entrant), while the
former communicate via global data. Choosing the Reusable function option
directs Real-Time Workshop to generate a single function (optionally in a
separate file) for the subsystem, and to call that code for each identical
subsystem in the model, if possible.

4-10

Nonvirtual Subsystem Code Generation

Note The Reusable function option will yield code that gets called from
multiple sites (hence reused) only when the Auto option would also do so. The
difference between these options’ behavior is that when reuse is not possible,
selecting Auto yields inlined code (or if circumstances prohibit inlining, create
a function without arguements), while choosing Reusable function yields a
separate function (with arguments) that is called from only one site.

Subsystems that are superfically identical still may not generate reusable code.
Specifically, Real-Time Workshop is not able to reuse subsystems having any
of the following characteristics:

¢ Input signals with differing sample times

¢ Input signals with differing dimensions

¢ Input signals with differing datatype or complexity

® Subsystem masks designating different run-time parameters

¢ Subsystems containing identical blocks with different names

® Subsystems containing identical blocks with different parameter settings
Some of these situations can arise even when subsystems are copied and pasted
within or between models or are manually constructed to be identical. If
Real-Time workshop determines that code for a subsystem cannot be reused, it
will output the subsystem as a function with arguments when Reusable
function is selected, but the function will not be reused. If you prefer that

subsystem code be inlined in such circumstances rather than deployed as
functions, you should choose Auto for the RTW system code option.

The presence of certain blocks in a subsystem can also prevent its code from
being reused. These are:

® Scope blocks (with data logging enabled)

¢ S-function blocks that fail to meet certain criteria

¢ To File blocks

® To Workspace blocks

Regarding S-function blocks, there are several requirements that need to be

met in order for subsystems containing them to be reused. See “Creating
Code-Reuse-Compatible S-Functions” in the Simulink documentation.

4-11

4 Building Subsystems

When you select the Reusable function option, two additional options are
enabled. See the explanation of “Function Option” on page 4-7 for descriptions
of these options and fields. If you enter names in these fields, you must specify
exactly the same function name and filename for each instance of identical
subsystems for Real-Time Workshop to be able to reuse the subsytem code.

Subspstem

Select the zeftings for the subsystem block.

=
F

¥ Show port labels

Fiead/wiite permissions: | Feadwite d
Mame of emar callback function:
|

¥ Treat as atomic unit

RTw spstem code: IHeusabIe function j

RT' function name options: IAuto d

BT furnetion namme:

RTw file name options: IAuto d

B file mame [ho extension]:

QK I Cancel | Help | Apply |

Figure 4-5: Subsystem Reusable Function Code Generation Option

To request that Real-Time Workshop generate reusable subsystem code:

4-12

Select the subsystem block. Then select Subsystem parameters from the
Simulink Edit menu. The Block Parameters dialog opens, as shown in
Figure 4-3.

Alternatively, you can open the Block Parameters dialog by:

= Shift-double-clicking on the Subsystem block

= Right-clicking on the Subsystem block and selecting Block parameters
from the pop-up menu.

Nonvirtual Subsystem Code Generation

2 Ifthe subsystem is virtual, select Treat as atomic unit as shown in
Figure 4-5. This makes the subsystem atomic, and the RTW system code
pop-up menu becomes enabled.

If the system is already nonvirtual, the RTW system code menu is already
enabled.

3 Select Resusable function from the RTW system code menu as shown in
Figure 4-5.

4 Ifyou wish to give the function a specific name, set the function name, using
the RTW function name options described in “RTW Function Name Options
Menu” on page 4-8.

If you do not choose the RTW function name Auto option, and want code to
be reused, you must assign exactly the same function name to all other
subsystem blocks that you want to share this code.

5 If you wish to direct the generated code to a specific file, set the filename
using any RTW file name option other than Auto (options are described in
“RTW File Name Options Menu” on page 4-8).

In order for code to be reused, you must follow this step for all other
subsystem blocks that you want to share this code, using the same filename.

6 Click Apply and close the dialog.

Modularity of Subsystem Code

Note that code generated from nonvirtual subsystems, when written to
separate files, is not completely independent of the generating model. For
example, subsystem code may reference global data structures of the model.
Each subsystem code file contains appropriate include directives and
comments explaining the dependencies. Real-Time Workshop checks for cyclic
file dependencies and warns about them at build time. For descriptions of how
generated code is packaged, see “Generated Source Files” on page 2-48.

Code Reuse Diagnostics

HTML code generation reports (see “ Generate HTML Report” on page 2-10) contain a
Subsystems link in their Contents section to a table that summarizes how

4-13

4 Building Subsystems

nonvirtual subsystems were converted to generated code. The Subsystems
section contains diagnostic information that helps to explain why the contents
of some subsystems were not generated as reusable code. In addition to
diagnosing exceptions, the HTML report’s Subsystems section also maps each
noninlined subsystem in the model to functions or reused functions in the
generated code.

4-14

Generating Code and Executables from Subsystems

Generating Code and Executables from Subsystems

Real-Time Workshop can generate code and build an executable from any
subsystem within a model. The code generation and build process uses the code
generation and build parameters of the root model.

To generate code and build an executable from a subsystem:

Set up the desired code generation and build parameters in the Simulation
Parameters dialog, just as you would for code generation from a model.

Select the desired subsystem block.

Right-click on the subsystem block and select Build Subsystem from the
Real-Time Workshop submenu of the subsystem block’s context menu.

Alternatively, you can select Build Subsystem from the Real-Time
Workshop submenu of the Tools menu. This menu item is enabled when a
subsystem is selected in the current model.

Note If the model is operating in external mode when you select Build
Subsystem, Real-Time Workshop automatically turns off external mode for
the duration of the build, then restores external mode upon its completion.

4 The Build Subsystem window opens. This window displays a list of the

subsystem parameters. The upper pane displays the name, class, and
storage class of each variable (or data object) that is referenced as a block
parameter in the subsystem.When you select a parameter in the upper pane,
the lower pane shows all the blocks that reference the parameter, and the
parent system of each such block.

The StorageClass column contains a popup menu for each row. The menu
lets you set the storage class of any parameter, or inline the parameter. To
inline a parameter, select the Inline option from the menu. To declare a

4-15

4 Building Subsystems

parameter to be tunable, set the storage class to any value other than

Inline.)
<) Build code for Subsystem: Gain [H[=] B3
~Picktunable parameters
Variable Mame Class StorageClass
@ K1 ASAPZ Parameter | SimulinkGlabal =
@ K2 Simulink Parameter | INlined |
SimulinkGlabal - | |
@K*l double ExportedGlabal -
| | d|
rBlocks using selected variable: K3
Block Farent
0 Gain2 gainiGain
Build Cancel Help |
Status
’7 Selecttunahle parameters and click Build ‘

In the illustration above, the parameter K2 is inlined, while the other
parameters are tunable and have various storage classes.

See “Parameters: Storage, Interfacing, and Tuning” on page 5-2 and
“Simulink Data Objects and Code Generation” on page 5-32 for further
information on tunable and inlined parameters and storage classes.

5 After selecting tunable parameters, click the Proceed button. This initiates
the code generation and build process.

6 The build process displays status messages in the MATLAB command
window. When the build completes, the generated executable is in your
working directory. The name of the generated executable is subsystem.exe
(PC) or subsystem (UNIX), where subsystem is the name of the source
subsystem block.

The generated code is in a build subdirectory, named
subsystem_target_rtw, where subsystem is the name of the source
subsystem block and target is the name of the target configuration.

4-16

Generating Code and Executables from Subsystems

Note You can generate subsystem code using any target configuration
available in the System Target File Browser. However, if the S-function target
is selected, Build Subsystem behaves identically to Generate S-function.
(See “Automated S-Function Generation” on page 10-11.)

4-17

4 Building Subsystems

4-18

Working with Data

Structures

This chapter continues the discussion of code generation and the build process, introduced in Chapter
1, “Understanding Real-Time Workshop.” Topics covered in detail include the following :

Parameters: Storage, Interfacing, and
Tuning (p. 5-2)

Signal Storage, Optimization, and
Interfacing (p. 5-17)

Simulink Data Objects and Code
Generation (p. 5-32)

Block States: Storing and Interfacing
(p. 5-48)

Storage Classes for Data Store Memory
Blocks (p. 5-56)

How to generate storage declarations for communicating
model parameters to and from user-written code

How signal storage optimizations work, and how to
generate storage declarations for communicating model
signals to and from user-written code

How to represent and store signals and parameters in
Simulink data objects, and how code is generated from
these objects

How to generate storage declarations for communicating
discrete block states to and from user-written code

How to control data structures which define and initialize
named shared memory regions, used by the Data Store
Read and Data Store Write blocks

5 Working with Data Structures

5-2

Parameters: Storage, Interfacing, and Tuning

Simulink external mode (see Chapter 6, “External Mode”) offers a quick and
easy way to monitor signals and modify parameter values while generated
model code executes. However, external mode may not be appropriate for your
application in some cases. The S-function and DOS targets do not support
external mode, for example. For other targets, you may want your existing code
to access parameters and signals of a model directly, rather than using the
external mode communications mechanism.

This section discusses how Real-Time Workshop generates parameter storage
declarations, and how you can generate the storage declarations you need to
interface block parameters to your code. For guidance on implementing a
parameter tuning interface using a C-API, see “C API for Parameter Tuning”
on page 14-77.

Storage of Nontunable Parameters

By default, block parameters are not tunable in the generated code. In the
default case, Real-Time Workshop has control of parameter storage
declarations and the symbolic naming of parameters in the generated code.

Nontunable parameters are stored as fields within rtP, a model-specific global
parameter data structure. Real-Time Workshop initializes each field of rtP to
the value of the corresponding block parameter at code generation time.

When the Inline parameters option is on, block parameters are evaluated at
code generation time, and their values appear as constants in the generated
code. (A vector parameter, however, may be represented as an array of
constants within rtP.) Use the Generate scalar inline parameters as
pull-down menu on the General code appearance category pane to choose
whether to represent such parameters as literals (numeric constants) or as
macros (#define constants) in the generated code.

As an example of nontunable parameter storage, consider this model.

P>

Outt
Sine Wawve

Parameters: Storage, Interfacing, and Tuning

The workspace variable Kp sets the gain of the Gain1 block.

Element-wize gain [y = K.*u] or matriz gain [= Ku or p = u*k),

Gain:
o

Multiplication: IEIement-wise[K."u] d

Assume that Kp is nontunable, and has a value of 5.0. Table 5-1 shows the
variable declarations and the code generated for Kp in the noninlined and
inlined cases.

Notice that the generated code does not preserve the symbolic name Kp. The
noninlined code represents the gain of the Gain1 block as rtP.Gain1_Gain.

5-3

5 Working with Data Structures

Table 5-1: Nontunable Parameter Storage Declarations and Code

Inline Generated Variable Declaration and Code
Parameters
Off typedef struct Parameters_tag {

real T Sine_Wave_Amp;
real T Sine_Wave_Bias;
real T Sine_Wave_Freq;
real_T Sine_Wave_Phase;
real T Gain1_Gain;

} Parameters;

Parameters rtP = {
1.0 , /*Sine_Wave_Amp :'<Root>/Sine Wave' */

0.0 , /*Sine_Wave_Bias:'<Root>/Sine Wave' */
1.0 , /*Sine_Wave_Freq: '<Root>/Sine Wave' */
0.0 , /*Sine_Wave_Phase: '<Root>/Sine Wave'*/
5.0 /*Gaini_Gain : '<Root>/Gaini' */
3
rtY.out1 = (rtP.Gain1_Gain * rtb_u);

On rtY.outlt = (5.0 * rtb_u);

Tunable Parameter Storage

A tunable parameter is a block parameter whose value can be changed at
run-time. A tunable parameter is inherently noninlined. A tunable expression
is an expression that contains one or more tunable parameters.

When you declare a parameter tunable, you control whether or not the
parameter is stored within rtP. You also control the symbolic name of the
parameter in the generated code.

When you declare a parameter tunable, you specify:

5-4

Parameters: Storage, Interfacing, and Tuning

¢ The storage class of the parameter.

In Real-Time Workshop, the storage class property of a parameter specifies
how Real-Time Workshop declares the parameter in generated code.

Note that the term “storage class,” as used in Real-Time Workshop, is not

synonymous with the term storage class specifier, as used in the C language.

® A storage type qualifier, such as const or volatile. This is simply an string
that is included in the variable declaration, without error checking.

¢ (Implicitly) the symbolic name of the variable or field in which the parameter
is stored. Real-Time Workshop derives variable and field names from the
names of tunable parameters.

Real-Time Workshop generates a variable or struct storage declaration for
each tunable parameter. Your choice of storage class controls whether the
parameter is declared as a member of rtP or as a separate global variable.

You can use the generated storage declaration to make the variable visible to
your code. You can also make variables declared in your code visible to the
generated code. You are responsible for properly linking your code to generated
code modules.

You can use tunable parameters or expressions in your root model and in
masked or unmasked subsystems, subject to certain restrictions (See “Tunable
Expressions” on page 5-12.)

To declare tunable parameters, you must first enable the Inline parameters
option. You then use the Model Parameter Configuration dialog to remove
individual parameters from inlining and declare them to be tunable. This
allows you to improve overall efficiency by inlining most parameters, while at
the same time retaining the flexibility of run-time tuning for selected
parameters.

The mechanics of declaring tunable parameters is discussed in “Using the
Model Parameter Configuration Dialog” on page 5-8.

Storage Classes of Tunable Parameters
Real-Time Workshop defines four storage classes for tunable parameters. You

must declare a tunable parameter to have one of the following storage classes:

® SimulinkGlobal (Auto): SimulinkGlobal (Auto) is the default storage class.
Real-Time Workshop stores the parameter as a member of rtP. Each

5-5

5 Working with Data Structures

member of rtP is initialized to the value of the corresponding workspace
variable at code generation time.

® ExportedGlobal: The generated code instantiates and initializes the
parameter and model private.h exports it as a global variable. An exported
global variable is independent of the rtP data structure. Each exported
global variable is initialized to the value of the corresponding workspace
variable at code generation time.

® ImportedExtern: model private.h declares the parameter as an extern
variable. Your code must supply the proper variable definition and
initializer, if any.

® ImportedExternPointer: model private.h declares the variable as an
extern pointer. Your code must supply the proper pointer variable definition
and initializer, if any.

The generated code for model.h includes model private.h in order to make
the extern declarations available to subsystem files.

As an example of how the storage class declaration affects the code generated
for a parameter, consider the model shown below.

[o -
IRV g g

Sine Wawve Gaini

Block Parameters: Gainl

—Gain

Element-wize gain [y = K.*u] or matriz gain [¥ = Ku or p = u*k).

I Gain:
[Kd
Multiplication: I K. j

¥ Saturate on integer overflow

QK I Cancel | Help | Lol |

The workspace variable Kp sets the gain of the Gain1 block. Assume that the
value of Kp is 5.0. Table 5-2 shows the variable declarations and the code
generated for the gain block when Kp is declared as a tunable parameter. An
example is shown for each storage class.

5-6

Parameters: Storage, Interfacing, and Tuning

Note Real-Time Workshop uses column-major ordering for two-dimensional
signal and parameter data. When interfacing your hand-written code
interfaces to such signals or parameters via ExportedGlobal,
ImportedExtern, or ImportedExternPointer declarations, make sure that
your code observes this ordering convention.

Note that the symbolic name Kp is preserved in the variable and field names in

the generated code.

Table 5-2: Tunable Parameter Storage Declarations and Code

Storage Class

Generated Variable Declaration and Code

SimulinkGlobal(Auto)

ExportedGlobal

typedef struct Parameters_tag {
real_T Kp;
} Parameters;

Parameters rtP = {
5.0
}s

rtY.out1 = (rtP.Kp * rtb_u);

extern real T Kp;
real T Kp = 5.0;

rtY.out1 = (Kp * rtb_u);

5-7

5 Working with Data Structures

5-8

Table 5-2: Tunable Parameter Storage Declarations and Code

Storage Class Generated Variable Declaration and Code

ImportedExtern extern real T Kp;

rtyY.out1 = (Kp * rtb_u);

ImportedExternPointer extern real T *Kp;

rtY.out1 = ((*Kp) * rtb_u);

Using the Model Parameter Configuration Dialog
The Model Parameter Configuration dialog is available only when the Inline
parameters option on the Advanced page is selected. Selecting this option
activates the Configure button.

=1ox]
Solverl Workspacel.-"Dl Diagnosticsl Advanced HeaI-TimeW’orkshopl
Model parameter configuration
™ Inline parameters Eonfigure...l
Optimizations:)
Action
Elock reduction 0ff ﬂ © On
Boolean logic sigmals 0ff
Conditional input branch On 0Off
Parametetr tinnline fn ¥
Model Yerification block contral: IUse local settings 'l
Production hardware characteristics: IMicroprocessor j
BitsPerChar 5 ﬂ Value:
RitaPerTnt 57 ¥ I
QK | Eancell Help | Apply |

Parameters: Storage, Interfacing, and Tuning

Clicking on the Configure button opens the Model Parameter Configuration

dialog.
<) Model Parameter Configuration: tunable_examp
—Description
Define the global (funable) parameters for your model. These parameters affect:
1. the simulation by providing the ability to tune parameters during execution, and
2. the generated code by enabling access to parametears by other modules.
—Source list —Glohal {tunahle) parameters
MATLAB workspace LI Mame Storage class | Storage type gualifier
1|kp SimulinkGlabal (Auta) L" -
REME S| 2cional |ExporedGiobal =l ~
i8] 7d = 3| anExarn [IMportedExtermn L" -
) 2 4| anEstarnp[ImportedExtem L" -
21|a =
22|aGlohal
23| anbxtern
24| anExternP
24]h
26| beta
27|cmdgain
28y
289 gamma
Refresh list | AtmEkle >>| e | BErmmye |
Ready QK | Cancel | Help | Apply |

Figure 5-1: The Model Parameter Configuration Dialog

The Model Parameter Configuration dialog lets you select workspace
variables and declare them to be tunable parameters in the current model. The
dialog is divided into two panels:

¢ The Global (tunable) parameters panel displays and maintains a list of
tunable parameters associated with the model.

® The Source list panel displays a list of workspace variables and lets you add
them to the tunable parameters list.

To declare tunable parameters, you select one or more variables from the
source list, add them to the Global (tunable) parameters list, and set their
storage class and other attributes.

5-9

5 Working with Data Structures

5-10

Source List Panel. The Source list panel displays a menu and a scrolling table of
numerical workspace variables.

The menu lets you choose the source of the variables to be displayed in the list.
Currently there is only one choice: MATLAB workspace. The source list
displays names of the variables defined in the MATLAB base workspace.

Selecting one or more variables from the source list enables the Add to table
button. Clicking Add to table adds selected variables to the tunable
parameters list in the Global (tunable) parameters panel. This action is all
that is necessary to declare tunable parameters.

In the source list, the names of variables that have been added to the tunable
parameters list are displayed in italics (See Figure 5-1).

The Refresh list button updates the table of variables to reflect the current
state of the workspace. If you define or remove variables in the workspace
while the Model Parameter Configuration dialog is open, click the Refresh
list button when you return to the dialog. The new variables are added to the
source list.

Global (Tunable) Parameters Panel. The Global (tunable) parameters panel
displays a scrolling table of variables that have been declared tunable in the
current model, and lets you specify their attributes. The Global (tunable)
parameters panel also lets you remove entries from the list, or create new
tunable parameters.

You select individual variables and change their attributes directly in the
table. The attributes are:

® Storage class of the parameter in the generated code. Select one of
= SimulinkGlobal (Auto)
= ExportedGlobal
= ImportedExtern
= ImportedExternPointer
See “Storage Classes of Tunable Parameters” on page 5-5 for definitions.

® Storage type qualifier of the variable in the generated code. For variables
with any storage class except SimulinkGlobal (Auto), you can add a qualifier
(such as const or volatile) to the generated storage declaration. To do so,
you can select a predefined qualifier from the list, or add additional qualifiers
to the list. Note that the code generator does not check the storage type

Parameters: Storage, Interfacing, and Tuning

qualifier for validity. The code generator includes the qualifier string in the
generated code without syntax checking.

¢ Name of the parameter. This field is used only when creating a new tunable
variable.

The Remove button deletes selected variables from the Global (tunable)
parameters list.

The New button lets you create new tunable variables in the Global (tunable)
parameters list. At a later time, you can add references to these variables in
the model.

If the name you enter matches the name of an existing workspace variable in
the Source list, that variable is declared tunable, and is displayed in italics in
the Source list.

To define a new tunable variable, click the New button. This creates an empty
entry in the table. Then, enter the name and attributes of the variable and click

Apply.

Note If you edit the name of an existing variable in the list, you actually
create a new tunable variable with the new name. The previous variable is
removed from the list and loses its tunability (that is, it is inlined).

Declaring Tunable Variables
To declare an existing variable tunable:

1 Open the Model Parameter Configuration dialog.
2 In the Source list panel, click on the desired variable in the list to select it.

3 Click the Add to table button. The variable then appears in the table of
tunable variables in the Global (tunable) parameters panel.

4 Click on the variable in the Global (tunable) parameters panel.
5 Select the desired storage class from the Storage class menu.

6 Optionally, select (or enter) a storage type qualifier.

5-11

5 Working with Data Structures

7 Click Apply, or click OK to apply changes and close the dialog.

Tunable Expressions

Real-Time Workshop supports the use of tunable variables in expressions. An
expression that contains one or more tunable parameters is called a tunable
expression.

Currently, there are certain limitations on the use of tunable variables in
expressions. When an expression described below as not supported is
encountered during code generation, a warning is issued and a nontunable
expression is generated in the code. The limitations on tunable expressions are:

* Complex expressions are not supported, except where the expression is
simply the name of a complex variable.

® The use of certain operators or functions in expressions containing tunable
operands is restricted. Restrictions are applied to four categories of operators
or functions, classified in Table 5-3.

Table 5-3: Tunability Classification of Operators and Functions

Category Operators or Functions

1 +-_*_/<><=>===~=&|
2 *
3 abs, acos, asin, atan, atan2, boolean, ceil, cos,

cosh, exp, floor, int8, int16, int32, log, logi1o0,
rem, sign, sin, sinh, sqrt, tan, tanh, uint8,
uint16, uint32

4 S T 5 P W U

The rules applying to each category are as follows:

® Category 1 is unrestricted. These operators can be used in tunable
expressions with any combination of scalar or vector operands.

® Category 2 operators can be used in tunable expressions where at least one
operand is a scalar. That is, scalar/scalar and scalar/matrix operand
combinations are supported, but not matrix/matrix.

Parameters: Storage, Interfacing, and Tuning

e Category 3 lists all functions that support tunable arguments. Tunable
arguments passed to these functions retain their tunability. Tunable
arguments passed to any other functions lose their tunability.

® Category 4 operators are not supported.

Note The “dot” (structure membership) operator is not supported. This
means that expressions that include a structure member are not tunable.

Tunable Expressions in Masked Subsystems

Tunable expressions are allowed in masked subsystems. You can use tunable
parameter names or tunable expressions in a masked subsystem dialog. When
referenced in lower-level subsystems, such parameters remain tunable.

As an example, consider the masked subsystem depicted below. The masked
dialog variable k sets the gain parameter of theGain.

In1 Outl

theain

Suppose that the base workspace variable b is declared tunable with
SimulinkGlobal (Auto) storage class. Figure 5-2 shows the tunable expression
b*3 in the subsystem’s mask dialog.

—masker] [mask)

The gain parameter of this block iz et to the masked workspace
wvaniable k.

Cancel | Help | Lol |

Figure 5-2: Tunable Expression in Subsystem Mask Dialog

5-13

5 Working with Data Structures

5-14

Real-Time Workshop produces the following output computation for theGain.
The variable b is represented as a member of the global parameters structure,
rtP. (Note that for clarity in showing the individual Gain block computation,

Expression folding was turned off in this example.)

/* Gain Block: <S1>/theGain */
rtb_temp0 *= (rtP.b * 3.0);

Limitations of Tunable Expressions in Masked Subsystems. Expressions that include
variables that were declared or modified in mask initialization code are not
tunable.

As an example, consider the subsystem above, modified as follows:

® The mask initialization code is
t =3 * k;

® The parameter k of the myGain block is 4 + t.

® Workspace variable b = 2. The expression b * 3 is plugged into the mask
dialog as in Figure 5-2.

Since the mask initialization code can only run once, k is evaluated at code
generation time as

4+ (3 * (2 *3))

Real-Time Workshop inlines the result. Therefore, despite the fact that b was
declared tunable, the code generator produces the following output
computation for theGain. (Note that for clarity in showing the individual Gain
block computation, Expression folding was turned off in this example.)

/* Gain Block: <S1>/theGain */
rtb_temp0 *= (22.0);

Tunability of Linear Block Parameters

The following blocks have a Realization parameter that affects the tunability
of their parameters:

¢ Transfer Fcn

® State-Space

® Discrete Transfer Fen

Parameters: Storage, Interfacing, and Tuning

¢ Discrete State-Space
¢ Discrete Filter

The Realization parameter must be set via the MATLAB set_param
command, as in the following example.

set_param(gcb, 'Realization', 'auto')
The following values are defined for the Realization parameter:

¢ general: The block's parameters are preserved in the generated code,
permitting parameters to be tuned.

¢ sparse: The block's parameters are represented in the code by transformed
values that increase the computational efficiency. Because of the
transformation, the block’s parameters are no longer tunable.

® auto: This setting is the default. A general realization is used if one or more
of the block's parameters are tunable. Otherwise sparse, is used.

Note To tune the parameter values of a block of one of the above types
without restriction during an external mode simulation, you must use set

Realization to general.

5-15

5 Working with Data Structures

5-16

[OFF]

Inline
Parameters

\

ON<

—

Parameter Configuration Quick Reference Diagram

Figure 5-3 diagrams the code generation and storage class options that control
the representation of parameters in generated code.

REAL -TIME WORKSHOP CONTROLS SYMBOL USED IN CODE

1K

Include parameter fields in a
= u* (rtP.<???7>); global structure (names may be
mangled)

[Auto] % B
(implicit) E

REAL -TIME WORKSHOP CONTROLS SYMBOL USED IN CODE

Use numeric value of

* .
u* (5.0); parameter (if possible)

const *p_<???> = &rtP.<??7>[0];
for (i=0; i<N; i++){ Otherwise, include in a

y[i] = u * (p_<???>[i]); constant global structure
}
. /
INCLUDED IN LIST OF GLOBAL (TUNABLE) PARAMETERS

K . - . Include in a \

[SimulinkGlobal(Auto)]] y = u* (rtP.Kp); b o cure

ExportedGlobal E y = u* (Kp);
>_Symbol preserved
must be unique
ImportedExtern E y = u* (Kp); Unstructured (que)
storage
ImportedExternPointer y = u* (*Kp); _

/

KEY:

[option] : default for code generation option
<???> : RTW generated symbol for parameter storage field

Figure 5-3: Parameter Configuration Quick Reference Diagram

Signal Storage, Optimization, and Interfacing

Signal Storage, Optimization, and Interfacing

Real-Time Workshop offers a number of options that let you control how
signals in your model are stored and represented in the generated code. This
section discusses how you can use these options to:

® Control whether signal storage is declared in global memory space, or locally
in functions (i.e., in stack variables).

¢ Control the allocation of stack space when using local storage.

® Ensure that particular signals are stored in unique memory locations by
declaring them as test points.

¢ Reduce memory usage by instructing Real-Time Workshop to store signals
in reusable buffers.

¢ Control whether or not signals declared in generated code are interfaceable
(visible) to externally written code. You can also specify that signals are to
be stored in locations declared by externally written code.

® Preserve the symbolic names of signals in generated code by using signal
labels.

The discussion in the following sections refers to code generated from
Signals_examp, the model shown in the figure below.

Out1

m SinSig =[|> Gain1 5ig 1
Gaini

Sine Wawve

Figure 5-4: Signals_examp Model

Signal Storage Concepts

This section discusses structures and concepts you must understand in order
to choose the best signal storage options for your application:

¢ The global block I/0 data structure rtB
® The concept of signal storage classes as used in Real-Time Workshop

5-17

5 Working with Data Structures

5-18

riB: the Global Block 1/O Structure

By default, Real-Time Workshop attempts to optimize memory usage by
sharing signal memory and using local variables.

However, there are a number of circumstances in which it is desirable or
necessary to place signals in global memory. For example:

* You may want a signal to be stored in a structure that is visible to externally
written code.

¢ The number and/or size of signals in your model may exceed the stack space
available for local variables.

In such cases, it is possible to override the default behavior and store selected
(or all) signals in a model-specific global block I/ 0 data structure. The global
block I/O structure is called rtB.

The following code fragment illustrates how rtB is defined and declared in code
generated (with signal storage optimizations off) from the Signals_examp
model shown in Figure 5-4.

typedef struct BlockIO_tag {

real_T SinSig; /* <Root>/Sine Wave */
real T Gain1Sig; /* <Root>/Gain1 */

} BlockIO;

/* Block I/0 Structure */
BlockIO rtB;

Field names for signals stored in rtB are generated according to the rules
described in “Symbolic Naming Conventions for Signals in Generated Code” on
page 5-27.

Storage Classes for Signals

In Real-Time Workshop, the storage class property of a signal specifies how
Real-Time Workshop declares and stores the signal. In some cases this
specification is qualified by further options.

Note that in the context of Real-Time Workshop, the term “storage class” is not
synonymous with the term storage class specifier, as used in the C language.

Signal Storage, Optimization, and Interfacing

Default Storage Class. Auto is the default storage class. Auto is the appropriate
storage class for signals that you do not need to interface to external code.
Signals with Auto storage class may be stored in local and/or shared variables,
or in a global data structure. The form of storage depends on the Signal
storage reuse, Buffer reuse, and Local block outputs options, and on
available stack space. See “Signals with Auto Storage Class” on page 5-20 for a
full description of code generation options for signals with Auto storage class.

Explicitly Assigned Storage Classes. Signals with storage classes other than Auto
are stored either as members of rtB, or in unstructured global variables,
independent of rtB. These storage classes are appropriate for signals that you
want to monitor and/or interface to external code.

The Signal storage reuse and Local block outputs optimizations do not apply
to signals with storage classes other than Auto.

Use the Signal Properties dialog to assign these storage classes to signals:

® SimulinkGlobal(Test Point): Test points are stored as fields of the rtB
structure that are not shared or reused by any other signal. See “Declaring
Test Points” on page 5-24 for further information.

® ExportedGlobal: The signal is stored in a global variable, independent of the
rtB data structure. model private.h exports the variable. Signals with
ExportedGlobal storage class must have unique signal names. See
“Interfacing Signals to External Code” on page 5-25 for further information.

® ImportedExtern: model private.h declares the signal as an extern
variable. Your code must supply the proper variable definition. Signals with
ImportedExtern storage class must have unique signal names. See

“Interfacing Signals to External Code” on page 5-25 for further information.

® ImportedExternPointer:model private.h declares the signal as an extern
pointer. Your code must supply a proper pointer variable definition. Signals
with ImportedExtern storage class must have unique signal names. See

“Interfacing Signals to External Code” on page 5-25 for further information.

5-19

5 Working with Data Structures

Signals with Auto Storage Class

This section discusses options that are available for signals with Auto storage
class. These options let you control signal memory reuse and choose local or

global (rtB) storage for signals.
The Signal storage reuse and Buffer reuse options control signal memory
reuse. The Signal storage reuse option is on the Advanced page of the
Simulation Parameters dialog box.
=10l

Fieal-Time ‘Workshop |

Solverl Workspacel.-"Dl Diagnosticsl Advanced

Model parameter configuration
™ Inline parameters Eonfigure...l
Optimizations:)

Action
Parameter pooling On & On
El3 solver module
Signal Storage reuse 0Off
Zern nrnasing detentinm fn ;I
Model Yerification block contral: IUse local settings 'l
Production hardware characteristics: IMicroprocessor j
BitsPerChar 5 ﬂ Value:
RitaPerTnt 57 ¥ I

QK | Eancell Help | Apply |

When Signal storage reuse is on, the Buffer reuse option becomes enabled.
The Buffer reuse option is located on the General Code Generation Options
(cont.) category of the Real-Time Workshop pane. When the Buffer reuse
option is selected, signal storage is reused whenever possible.

5-20

Signal Storage, Optimization, and Interfacing

~) Simulation Parameters: Signals_e = o]

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Categony: I General code generation options (cont.] j Generate codel

Options
¥ Buffer reuse

¥ Expression folding
¥ Fold unralled vectars

¥ Enforce integer downcast

QK | Eancell Help | Apply |

The Local block outputs option determines whether signals are stored as
members of rtB, or as local variables in functions. This option is in the General
code generation options category of the Real-Time Workshop pane.

~) Simulation Parameters: Signals_e = o]

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Category: I General code generation options j Generate codel

Options
¥ Show eliminated statements

Loop rolling threshold: | 5
V¥ Verbose builds

¥ Generate HTHL report
I~ | [nline insariant sigrials
¥ Local block outputs

[Force generation of parameter comments

QK | Eancell Help | Apply |

By default, both Signal storage reuse and Local block outputs are on.

Note that these options interact. When the Signal storage reuse option is on:

¢ The Buffer reuse option is enabled. By default, Buffer reuse is on and
signal memory is reused whenever possible.

5-21

5 Working with Data Structures

5-22

¢ The Local block outputs option is enabled. This lets you choose whether
reusable signal variables are declared as local variables in functions, or as
members of rtB.

The following code examples illustrate the effects of the Signal storage reuse,
Buffer reuse, and Local block outputs options. The examples were generated
from the Signals_examp model (see Figure 5-4).

The first example illustrates maximal signal storage optimization, with Signal
storage reuse, Buffer reuse, and Local block outputs on (the default). The
output signals from the Sine Wave and Gain blocks reuse rtb_SinSig, a
variable local to the Md10utputs function.

/* local block i/o variables */
real T rtb_SinSig;

/* Sin Block: <Root>/Sine Wave */

rtb_SinSig = rtP.Sine_Wave_ Amp *
sin(rtP.Sine_Wave_Freq * rtmGetT(rtM_Signals_examp) + ...
rtP.Sine_Wave Phase) + rtP.Sine_Wave Bias;

/* Expression for <Root>/0Outi incorporates: */
/* Gain Block: <Root>/Gain1 */

/* Outport Block: <Root>/Outl */
rtyY.Out1 = (rtP.Gaini_Gain * rtb_SinSig);

If you are constrained by limited stack space, you can turn Local block
outputs off and still benefit from memory reuse. The following example was
generated with Local block outputs off and Signal storage reuse and Buffer
reuse on. The output signals from the Sine Wave and Gain blocks reuse
rtB.temp0, a member of rtB.

rtB.tempO = rtP.Sine_Wave_Amp * sin(rtP.Sine_Wave_Freq *
rtmGetT(rtM_Signals_examp) + rtP.Sine_Wave_Phase) +
rtP.Sine_Wave_Bias;

/* Gain Block: <Root>/Gaintl */
rtB.temp0 *= rtP.Gain1_Gain;

Signal Storage, Optimization, and Interfacing

When the Signal storage reuse option is off, Buffer reuse and Local block
outputs are disabled. This makes all block outputs global and unique, as in the
following code fragment.

/* 8in Block: <Root>/Sine Wave */
rtB.SinSig = rtP.Sine_Wave_Amp *

sin(rtP.Sine_Wave_Freq * rtmGetT(rtM_Signals_examp) +
rtP.Sine_Wave_Phase) + rtP.Sine_Wave_Bias;

/* Gain Block: <Root>/Gaini */
rtB.Gain1Sig = rtB.SinSig * rtP.Gaini1_Gain;

In large models, disabling Signal storage reuse can significantly increase
RAM and ROM usage. Therefore, this approach is not recommended.

Table 5-4 summarizes the possible combinations of the Signal storage reuse/
Buffer reuse and Local block outputs options.

Table 5-4: Global, Local, and Reusable Signal Storage Options

Signal storage reuse and Signal storage reuse OFF
Buffer reuse ON (Buffer reuse disabled)
Local Block Reuse signals in local N/A

Outputs ON memory (fully optimized)

Local Block Reuse signals in rtB Individual signal storage in
Outputs OFF structure rtB structure

Controlling Stack Space Allocation

When the Local block outputs option is on, the use of stack space is
constrained by the following TLC variables:

® MaxStackSize: the total allocation size of local variables that are declared by
all functions in the entire model may not exceed MaxStackSize (in bytes).
MaxStackSize can be any positive integer. If the total size of local variables
exceeds this maximum, the Target Language Compiler will allocate the
remaining variables in global, rather than local, memory.

The default value for MaxStackSize is rtInf, i.e. unlimited stack size.

5-23

5 Working with Data Structures

5-24

® MaxStackVariableSize: limits the size of any local variable declared in a
function to N bytes, where N>0. A variable whose size exceeds
MaxStackVariableSize will be allocated in global, rather than local,
memory.

You can change the values of these variables in your system target file if
necessary. See“Target Language Compiler Variables and Options” on
page 2-60 for further information.

Declaring Test Points

A test point is a signal that is stored in a unique location that is not shared or
reused by any other signal. Test-pointing is the process of declaring a signal to
be a test point.

Test points are stored as members of the rtB structure, even when the Signal
storage reuse and Local block outputs option are selected. Test-pointing lets
you override these options for individual signals. Therefore, you can test-point
selected signals, without losing the benefits of optimized storage for the other
signals in your model.

Signal Storage, Optimization, and Interfacing

To declare a test point, use the Simulink Signal Properties dialog box as

follows:

1 In your Simulink block diagram, select the line that carries the signal. Then
select Signal properties from the Edit menu of your model. This opens the

Signal properties dialog box.

Alternatively, you can right-click the line that carries the signal, and select
Signal properties from the pop-up menu.

+ Signal Properties: SinSig [H[=] B3
rDocumentation
Signal name:
| Sinsig
Drescription:
Document link:
rSignal monitoring and code generation optiong —
¥ SimulinkGlobal [Test Paint]
B starane class: IAUtU 'l
B storage pe qualiier:
QK | Cancel | Help | Apply |

2 Check the SimulinkGlobal (Test Point) option.

3 Click Apply.

For an example of storage declarations and code generated for a test point, see
Table 5-5, Signal Properties Options and Generated Code, on page 5-29.

Interfacing Signals to External Code

The Simulink Signal Properties dialog lets you interface selected signals to
externally written code. In this way, your hand-written code has access to such
signals for monitoring or other purposes. To interface a signal to external code,

5-25

5 Working with Data Structures

5-26

use the Signal Properties dialog box to assign one of the following storage

classes to the signal:

® ExportedGlobal
® ImportedExtern
® ImportedExternPointer

Set the storage class as follows:

1 In your Simulink block diagram, select the line that carries the signal.Then
select Signal Properties from the Edit menu of your model. This opens the

Signal Properties dialog box.

Alternatively, you can right-click the line that carries the signal, and select
Signal properties from the pull-down menu.

+ Signal Properties: SinSig [H[=] B3
rDocumentation
Signal name:
| SinSig
Drescription:
Document link:
rSignal monitoring and code generation optiong —
I SimulinkGlobal [Test Paint]
RT'w storage class: IERDUTtEdbed 'l
RTw storage type qualifier:
QK | Cancel | Help | Apply |

2 Deselect the SimulinkGlobal (Test Point) option if necessary. This enables

the RTW storage class field.

3 Select the desired storage class (ExportedGlobal, ImportedExtern, or
ImportedExternPointer) from the RTW storage class menu.

Signal Storage, Optimization, and Interfacing

4 Optional: For storage classes other than Auto and SimulinkGlobal, you can
enter a storage type qualifier such as const or volatile in the RTW storage
type qualifier field. Note that Real-Time Workshop does not check this
string for errors; whatever you enter is included in the variable declaration.

5 Click Apply.

Note You can also interface test points and other signals that are stored as
members of rtB to your code. To do this, your code must know the address of
the rtB structure where the data is stored, and other information. This
information is not automatically exported. Real-Time Workshop provides C
and Target Language Compiler APIs that give your code access to rtB and
other data structures. See “Interfacing Parameters and Signals” on page 14-70
for further information.

Limitation on Stateflow Outputs. Note that a nonscalar output signal exiting a
Stateflow chart can not be assigned storage class ImportedExternPointer.

Symbolic Naming Conventions for Signals
in Generated Code
When signals have a storage class other than Auto, Real-Time Workshop

preserves symbolic information about the signals or their originating blocks in
the generated code.

For labelled signals, field names in rtB derive from the signal names. In the
following example, the field names rtB.SinSig and rtB.Gain1Sig derive from
the corresponding labeled signals in the Signals_examp model (shown in
Figure 5-4).

typedef struct BlockIO_tag {

real T SinSig; /* <Root>/Sine Wave */
real T Gaini1Sig; /* <Root>/Gain1 */
} BlockIO;

For unlabeled signals, rtB field names derive from the name of the source block
or subsystem. The naming format is

rtB.system#_BlockName_outport#

5-27

5 Working with Data Structures

5-28

where system# is a unique system number assigned by Simulink, BlockName is
the name of the source block, and outport# is a port number. The port number
(outport#) is used only when the source block or subsystem has multiple
output ports.

When a signal has Auto storage class, Real-Time Workshop controls generation
of variable or field names without regard to signal labels.

Signal Storage, Optimization, and Interfacing

Summary of Signal Storage Class Options

Table 5-5 shows, for each signal storage class option, the variable declaration
and the code generated for Sine Wave output (SinSig) of the model shown in

Figure 5-4.

Table 5-5: Signal Properties Options and Generated Code

Storage Class

Declaration

Code

Auto

(with storage
optimizations
on)

Test point

Exported
Global

Imported
Extern

Imported
Extern
Pointer

real T rtb_SinSig;

typedef struct
BlockIO _tag {
real T SinSig;
real T Gain1Sig;
} BlockIO;

BlockIO rtB;

extern real T SinSig;
(declared in
model private.h

extern real T SinSig;
(declared in
model private.h)

extern real_T *SinSig;
(declared in
model_private.h)

rtb_SinSig = rtP.Sine_Wave_Amp *
sin(rtP.Sine_Wave_Freq *
rtmGetT(rtM_Signals_examp) +
rtP.Sine_Wave_Phase) +
rtP.Sine_Wave_Bias;

rtB.SinSig = rtP.Sine_Wave_Amp *
sin(rtP.Sine_Wave_Freq *
rtmGetT(rtM_Signals_examp) +
rtP.Sine_Wave_Phase) +
rtP.Sine_Wave_Bias;

rtB.SinSig = rtP.Sine_Wave_ Amp *
sin(rtP.Sine_Wave Freq *
rtmGetT(rtM_Signals_examp) +
rtP.Sine_Wave Phase) +
rtP.Sine_Wave Bias;

rtB.SinSig = rtP.Sine_Wave_ Amp *
sin(rtP.Sine_Wave Freq *
rtmGetT(rtM_Signals_examp) +
rtP.Sine_Wave Phase) +
rtP.Sine_Wave_Bias;

*8inSig) = rtP.Sine_Wave_Amp *
sin(rtP.Sine_Wave_Freq *
rtmGetT(rtM_Signals_examp) +
rtP.Sine_Wave_Phase) +
rtP.Sine_Wave_Bias;

5-29

5 Working with Data Structures

5-30

C API for Parameter Tuning and Signal Monitoring

Real-Time Workshop includes support for development of a C application
program interface (API) for tuning parameters and monitoring signals
independent of external mode. See “Interfacing Parameters and Signals” on
page 14-70 for information.

Target Language Compiler APl for Parameter
Tuning and Signal Monitoring

Real-Time Workshop includes support for development of a Target Language
Compiler API for tuning parameters and monitoring signals independent of
external mode. See “T'arget Language Compiler API for Signals and
Parameters” on page 14-92 for information.

Parameter Tuning via MATLAB Commands

The Model Parameter Configuration dialog is the recommended way to see
or set the attributes of tunable parameters. However, you can also use
MATLAB get_param and set_param commands.

The following commands return the tunable parameters and/or their
attributes:

® get_param(gcs, 'TunableVars')

® get_param(gcs, 'TunableVarsStorageClass')

® get _param(gcs, 'TunableVarsTypeQualifier')

The following commands declare tunable parameters or set their attributes:

® set_param(gcs, 'TunableVars', str)
The argument str (string) is a comma-separated list of variable names.
® set _param(gcs, 'TunableVarsStorageClass', str)
The argument str (string) is a comma-separated list of storage class
settings.
The valid storage class settings are:
Auto
ExportedGlobal
ImportedExtern
ImportedExternPointer

Signal Storage, Optimization, and Interfacing

® set_param(gcs, 'TunableVarsTypeQualifier', str)

The argument str (string) is a comma-separated list of storage type
qualifiers.

The following example declares the variable k1 to be tunable, with storage class
ExportedGlobal and type qualifier const.

set_param(gcs, 'TunableVars', 'k1')
set_param(gcs, 'ExportedGlobal')
set_param(gcs, 'TunableVarsTypeQualifier','const')

5-31

5 Working with Data Structures

Simulink Data Objects and Code Generation

Before using Simulink data objects with Real-Time Workshop, read the
following:

¢ The discussion of Simulink data objects in Using Simulink
® “Parameters: Storage, Interfacing, and Tuning” on page 5-2

® “Signal Storage, Optimization, and Interfacing” on page 5-17

Within the class hierarchy of Simulink data objects, Simulink provides two
classes that are designed as base classes for signal and parameter storage.
These are:

® Simulink.Parameter: Objects that are instances of the Simulink.Parameter
class or any class derived from Simulink.Parameter are called parameter
objects.

® Simulink.Signal: Objects that are instances of the Simulink.Signal class
or any class derived from Simulink.Signal are called signal objects.

The RTWInfo properties of parameter and signal objects are used by Real-Time
Workshop during code generation. These properties let you assign storage
classes to the objects, thereby controlling how the generated code stores and
represents signals and parameters.

Real-Time Workshop also writes information about the properties of
parameter and signal objects to the model . rtw file. This information, formatted
as Object records, is accessible to Target Language Compiler programs. For
general information on Object records, see “Object information in the
model.rtw file” in the Target Language Compiler Reference Guide.

The general procedure for using Simulink data objects in code generation is as
follows:

1 Define a subclass of one of the built-in Simulink.Data classes.

= For parameters, define a subclass of Simulink.Parameter.

= For signals, define a subclass of Simulink.Signal.

2 Instantiate parameter or signal objects from your subclass and set their
properties appropriately, using the Simulink Data Explorer.

Simulink Data Objects and Code Generation

3 Use the objects as parameters or signals within your model.

4 Generate code and build your target executable.

The following sections describe the relationship between Simulink data objects
and code generation in Real-Time Workshop.

5-33

5 Working with Data Structures

5-34

Parameter Objects
This section discusses how to use parameter objects in code generation.

Configuring Parameter Objects for Code Generation

In configuring parameter objects for code generation, you use the following
code generation and parameter object properties:

¢ The Inline parameters option (see “Parameters: Storage, Interfacing, and
Tuning” on page 5-2).
¢ Parameter object properties:
= Value. This property is the numeric value of the object, used as an initial
(or inlined) parameter value in generated code.
= RTWInfo.StorageClass. This property controls the generated storage
declaration and code for the parameter object.

Other parameter object properties (such as user-defined properties of classes
derived from Simulink.Parameter) do not affect code generation.

Note IfInline parameters is off (the default), the RTWInfo.StorageClass
parameter object property is ignored in code generation.

Effect of Storage Classes on Code Generation for Parameter Objects
Real-Time Workshop generates code and storage declarations based on the
RTWInfo.StorageClass property of the parameter object. The logic is as
follows:

¢ Ifthe storage classis 'Auto’ (the default), the parameter object is inlined (if
possible), using the Value property.
® For storage classes other than 'Auto’, the parameter object is handled as a
tunable parameter.
= A global storage declaration is generated. You can use the generated
storage declaration to make the variable visible to your hand-written code.
You can also make variables declared in your hand-written code visible to
the generated code.

Simulink Data Objects and Code Generation

= The symbolic name of the parameter object is preserved in the generated
code.

See Table 5-6 for examples of code generated for each possible setting of
RTWInfo.StorageClass.

Example of Parameter Object Code Generation

In this section, we use the Gain block computations of the model shown in the
figure below as an example of how Real-Time Workshop generates code for a
parameter object.

g >

Sine Wawve Gain1

x|
—Gain

Element-wize gain [y = K.*u] or matriz gain [= Ku or p = u*k),

Gain:

E

Multiplication: IEIement-wise[K."u] j

| I Show additional parameters -

QK I Cancel Help Apply |

Figure 5-5: Model Using Parameter Object Kp As Block Parameter

In this model, Kp sets the gain of the Gain1 block.

To configure a parameter object such as Kp for code generation:

1 Define a subclass of Simulink.Parameter. In this example, the parameter
object is an instance of the example class SimulinkDemos.Parameter, which
is provided with Simulink. For the definition of SimulinkDemos.Parameter,
see the directory
matlabroot/toolbox/simulink/simdemos/@SimulinkDemos.

5-35

5 Working with Data Structures

5-36

2 Instantiate a parameter object from your subclass. The following example
instantiates Kp as a parameter object of class SimulinkDemos.Parameter.

Kp = SimulinkDemos.Parameter;

Make sure that the name of the parameter object matches the desired block
parameter in your model. This ensures that Simulink can associate the
parameter name with the correct object. For example, in the model of
Figure 5-5, the Gain block parameter Kp resolves to the parameter object Kp.

3 Set the object properties.You can do this via the Simulink Data Explorer.
Alternatively, you can assign properties via MATLAB commands, as follows:

= Set the Value property, for example:
Kp.Value = 5.0;

= Set the RTWInfo.StorageClass property, for example:
Kp.RTWInfo.StorageClass = 'ExportedGlobal';

Table 5-6 shows the variable declarations for Kp and the code generated for the
Gain block in the model shown in Figure 5-5, with Inline parameters on. (Due
to expression folding optimizations, the gain computation is included in the
output computation.) An example is shown for each possible setting of
RTWInfo.StorageClass.

Simulink Data Objects and Code Generation

Table 5-6: Code Generation from Parameter Objects (Inline Parameters ON)

StorageClass Property

Generated Variable Declaration
and Code

Auto
Simulink Global

Exported Global

Imported Extern

Imported Extern Pointer

rtY.out1 = (5.0 * rtb_u)

typedef struct Parameters_tag {
real T Kp;

Parameters rtP = {
5.0
b

rtY.out1 = (rtP.Kp * rtb_u);

extern real_T Kp;
real T Kp = 5.0;

rtY.out1 = (Kp * rtb_u);

extern real_T Kp;

rtY.out1 = (Kp * rtb_u);

extern real T *Kp;

rtY.Out1 = ((*Kp) * rtb_u);

5-37

5 Working with Data Structures

5-38

Parameter Object Configuration Quick
Reference Diagram

The following figure diagrams the code generation and storage class options
that control the representation of parameter objects in generated code.

Kp = Simulink.Parameter; Kp.Value = 5.0;

iy

[OFF]

Inline
Parameters

\

ON

REAL -TIME WORKSHOP CONTROLS SYMBOL USED IN CODE

7~

{

n y = u* (PtP.<?27>);
mangled)

.

Include parameter fields in a
global structure (names may be

y = u* (5.0);

L

([Auto] %

const *p_<???> = &rtP.<???>[0];
for (i=0; i<N; i++){

N

REAL -TIME WORKSHOP CONTROLS SYMBOL USED IN CODE

Use numeric value of
parameter(if possible)

Otherwise, include in a

[option] : default for code generation option
<???> : RTW generated symbol for parameter storage field

y[i] = u * (p_<2??>[i]); constant global structure
}
- J
- -) Include in a)
SimulinkGlobal E y u* (rtP.Kp); global structure
ExportedGlobal E y = u* (Kp);
>_Symbol preserved
must be unique
ImportedExtern E y = u* (Kp); Unstructured (que)
storage
\ImportedExternPointer y = u* (*Kp); _
KEY:

Figure 5-6: Parameter Object Configuration Quick Reference Diagram

Simulink Data Objects and Code Generation

Signal Objects

This section discusses how to use signal objects in code generation.

Configuring Signal Objects for Code Generation

In configuring signal objects for code generation, you use the following code
generation options and signal object properties:

* The Signal storage reuse code generation option (see “Signal Storage,
Optimization, and Interfacing” on page 5-17).

¢ The Local block outputs code generation option (see “Signal Storage,
Optimization, and Interfacing” on page 5-17).

® The RTWInfo.StorageClass signal object property; the storage classes
defined for signal objects, and their effect on code generation, are the same
for model signals and signal objects (see “Storage Classes for Signals” on
page 5-18).

Other signal object properties (such as user-defined properties of classes

derived from Simulink.Signal) do not affect code generation.

Effect of Storage Classes on Code Generation for Signal Objects

The way in which Real-Time Workshop uses storage classes to determine how
signals are stored is the same with and without signal objects. However, if a
signal’s label resolves to a signal object, the object’s RTWInfo.StorageClass
property is used in place of the port configuration of the signal.

The default storage class is Auto. If the storage type is Auto, Real-Time
Workshop follows the Signal storage reuse, Buffer reuse, and Local block
outputs code generation options to determine whether signal objects are stored
in reusable and/or local variables. Make sure that these options are set
correctly for your application.

To generate a a test point or externally interfaceable signal storage
declaration, use an explicit RTWInfo.StorageClass assignment. For example,
setting the storage class to SimulinkGlobal, as in the following command, is
equivalent to declaring a signal as a test point.

SinSig.RTWInfo.StorageClass = 'SimulinkGlobal';

5-39

5 Working with Data Structures

Example of Signal Object Code Generation

The discussion and code examples in this section refers to the model shown in
Figure 5-7.

\J| Sinsig >I> Gain15ig
u

Sine Wawve Gain1

Figure 5-7: Example Model With Signal Object

To configure a signal object, you must first create it and associate it with a
labelled signal in your model. To do this:

1 Define a subclass of Simulink.Signal. In this example, the signal object is
an instance of the example class SimulinkDemos.Signal, which is provided
with Simulink. For the definition of SimulinkDemos.Signal, see the
directory
matlabroot/toolbox/simulink/simdemos/@SimulinkDemos.

2 Instantiate a signal object from your subclass. The following example
instantiates SinSig, a signal object of class SimulinkDemos.Signal.

SinSig = SimulinkDemos.Signal;

Make sure that the name of the signal object matches the label of the desired
signal in your model. This ensures that Simulink can resolve the signal label
to the correct object. For example, in the model shown in Figure 5-7, the
signal label SinSig would resolve to the signal object SinSig.

3 Set the object properties as required. You can do this via the Simulink Data
Explorer. Alternatively, you can assign properties via MATLAB commands.
For example, assign the signal object’s storage class by setting the
RTWInfo.StorageClass property as follows.

SinSig.RTWInfo.StorageClass = 'ExportedGlobal';

Table 5-7 shows, for each setting of RTWInfo.StorageClass, the variable
declaration and the code generated for Sine Wave output (SinSig) of the model
shown in Figure 5-7.

5-40

Simulink Data Objects and Code Generation

Table 5-7: Signal Properties Options and Generated Code

Storage Class Declaration Code

Auto real T rtb_SinSig; rtb_SinSig = rtP.Sine_Wave_Amp *
(with st sin(rtP.Sine_Wave_Freq *

“1. S o:gge rtmGetT (rtM_Signals_examp) +
optimizations rtP.Sine_Wave_Phase) +

on) rtP.Sine_Wave_Bias;

Simulink typedef struct rtb_SinSig = rtP.Sine_Wave_Amp *

Global BlockIO tag {
real T SinSig;
real T Gain1Sig;

} BlockIO;

BlockIO rtB;

Exported extern real T SinSig;

Global

Imported extern real T SinSig;

Extern

Imported extern real T *SinSig;
Extern

Pointer

sin(rtP.Sine_Wave_Freq *
rtmGetT (rtM_Signals_examp) +
rtP.Sine_Wave_Phase) +
rtP.Sine_Wave_Bias;

rtb_SinSig = rtP.Sine_Wave_Amp *
sin(rtP.Sine_Wave_Freq *
rtmGetT(rtM_Signals_examp) +
rtP.Sine_Wave_Phase) +
rtP.Sine_Wave_Bias;

rtb_SinSig = rtP.Sine_Wave_ Amp *
sin(rtP.Sine_Wave Freq *
rtmGetT(rtM_Signals_examp) +
rtP.Sine_Wave Phase) +
rtP.Sine_Wave Bias;

(*SinSig) = rtP.Sine_Wave_Amp *
sin(rtP.Sine_Wave Freq *
rtmGetT(rtM_Signals_examp) +
rtP.Sine_Wave_Phase) +
rtP.Sine_Wave_Bias;

5-41

5 Working with Data Structures

Signal Object Configuration Quick
Reference Diagram

Figure 5-8 diagrams the code generation and storage class options that control
the representation of signal objects in generated code.

SIG = Simulink.Signal;

SIG
REAL-TIME WORKSHOP CONTROLS SYMBOL USED IN CODE
[Local block/l ‘b tempd Declare locally)
- Can reuse | outputs ONI(B MP_teMP# = --- (store on stack) | peyse signal
[Signal signal >~ memory (if
storage Local block - Include in a possible)
reuse rtB.temp# -
outputs OFF global structure
ON] _/
-~
[Aut0]< Cannot E FtB.<227> = ... Include in a
. reuse signal global structure
Signal (see
storage n rtB.<???> = ... X .
reuse SimulinkGlobal)
| OFF \ ~

]
=
© =~
Signal labelled B rtese= ...
< SimulinkGlobal
o | (Test Point) . >~ Include in a
E{J Signal not labelled E rtB.<??2?> = ... global structure
8
) _
~
ExportedGlobal SIG = ... Unstructured storage
declaration; symbol
preserved (symbol label
Imported Extern E SIG = ... > must be unique)
\ImportedExternPointer a (*SIG) = ...
_/
KEY:

[option] : default for code generation option
<???> : RTW generated symbol for signal storage field or variable
: suffix (number) to variable name, appended by RTW

Figure 5-8: Signal Object Configuration Quick Reference Diagram

5-42

Simulink Data Objects and Code Generation

Resolving Conflicts in Configuration of Parameter
and Signal Objects

This section describes how to avoid and resolve certain conflicts that can arise
when using parameter and signal objects.

Parameters

Figure 5-9 and Figure 5-10 illustrate a case where both a tunable parameter Kp
(declared in the Model Parameter Configuration dialog box) and an
identically named parameter object Kp (defined in the Simulink Data
Explorer) exist. If Kp is used as a block parameter, there is a potential for
ambiguity when Simulink attempts to resolve the symbol Kp.

<) Model Parameter Configuration: conflicts =] E3

—Description

Define the global (funable) parameters for your model. These parameters affect:
1. the simulation by providing the ability to tune parameters during execution, and
2. the generated code by enabling access to parametears by other modules.

—Source list Global {tunahle) parameters
IMATLAB workspace LI Mame Storage class Storage type gualifier
1|kp SimulinkGlabal (Auta) LI LI
| MName |

Refresh list | AtmEkle >>| e | Remaove |

Ready 0k | IW“ Help | Ly |

Figure 5-9: Parameter Kp Defined with SimulinkGlobal Storage Class

5-43

5 Working with Data Structures

5-44

<} Simulink Data Explorer [H[=] B3
Objects Froperties
Mame Class i@ Simulink.Parameter
Simulink.Parameter RT¥Winfo Simulink_RTwinfoBean&
E bar Simulink Signal T StorageClass =] Aute
0 foo Simulink.Parameter Value El[hﬂ double array]

Filter option: |Simu|ink data objects LI 4| | >

Help | Close |

Figure 5-10: Parameter Object Kp Defined with Auto Storage Class

An obvious solution would be to assign different names to the parameter and
the parameter object.

If this is not desirable, however, you should make sure that the storage class
properties of identically named parameters and parameter objects are
compatible in accordance with Table 5-8. If they are not, an error message will
be displayed when the model is run, and/or when code generation is initiated.

Simulink Data Objects and Code Generation

In Figure 5-9 and Figure 5-10, the parameter Kp has SimulinkGlobal(auto)
storage class and the parameter object Kp has Auto storage class. Accordingly,
the symbol Kp would resolve to the parameter object Kp.

Tunable Parameter

Parameter Object

Auto (default) SimulinkGlobal Other

Auto (default)
SimulinkGlobal
Other

Use parameter object = Use parameter object = Use parameter object
Error Use parameter object Error

Error Error If storage class and
TypeQualifier same,
use parameter object,
otherwise error

Table 5-8: Compatible Parameter/Parameter Object Storage Class Configurations

Signals and Block States

Figure 5-11 and Figure 5-12 illustrate a case where both a signal Sig (defined
in the Signal Properties dialog box) and a signal object Sig (defined in the
Simulink Data Explorer) exist. There is a potential for ambiguity when
Simulink attempts to resolve the symbol Sig.

5-45

5 Working with Data Structures

<) Signal Properties: Sig [H[=] B3

rDocumentation

Signal name:
| Sig

Drescription:

Document link:

rSignal monitoring and code generation options

¥ SimulinkGlobal [Test Paint]

BT, storane class: IAUtU jv

B storage pe qualiier:

ak. | Eancell Help | Apply

Figure 5-11: Signal Sig Defined as SimulinkGlobal (Test Point)

<) Simulink Data Explorer

IS[=] E3

Objects

Froperties

Name

Class |

Y Kp

- bar

.

Filter option:

Simulink.Pararmeter =
Ul al
Simulink.Signal

Simulink data objects

&8 Simulink.Signal

= RTYWInfa
StorageClass

1

Simulink_RTwinfoBeans

:l Auto

| »

Help | Close

Figure 5-12: Signal Object Sig Defined with Auto Storage Class

An obvious solution would be to assign different names to the signal and the
signal object. If this is not desirable, however, you should make sure that the
storage class properties of identically named signals and signal objects are
compatible in accordance with Table 5-9. If they are not, an error message will
be displayed when model is run, and/or when code generation is initiated.

5-46

Simulink Data Objects and Code Generation

In Figure 5-11 and Figure 5-12, the signal and signal objects Sig both have
SimulinkGlobal storage class. Therefore no conflict would arise, and Sig would
resolve to the signal object Sig.

Note The rules for compatibility between block states/signal objects are
identical to those given for signals/signal objects.

Signal Signal Object
Auto (default) SimulinkGlobal Other
Auto (default) Use signal object Use signal object Use signal object
SimulinkGlobal Error Use signal object Error
(Test Point)
Other Error Error If storage class and

TypeQualifier same,
use signal object,
otherwise error

Table 5-9: Compatible Signal/Signal Object Configurations

Customizing Code for Parameter and Signal Objects

You can further influence the treatment of parameter and signal objects in
generated code by using TLC to access fields in object records in model.rtw
files. For details on doing this, please see “Object information in the model . rtw
file” in the Target Language Compiler Reference Guide.

Using Objects to Export ASAP2 Files

The ASAM-ASAP2 Data Definition Target provides special signal and
parameter subclasses that support exporting of signal and parameter object
information to ASAP2 data files. For information about the ASAP2 target and
its associated classes and TLC files, see “Generating ASAP2 Files” in the
Real-Time Workshop Embedded Coder User’s Guide.

5-47

5 Working with Data Structures

5-48

Block States: Storing and Interfacing

For certain block types, Real-Time Workshop lets you control how block states
in your model are stored and represented in the generated code. Using the
State Properties dialog, you can:

¢ Control whether or not states declared in generated code are interfaceable
(visible) to externally written code. You can also specify that states are to be
stored in locations declared by externally written code.

® Assign symbolic names to block states in generated code.

Storage of Block States

The discussion of block state storage in this section applies to the following
block types:

® Discrete Filter

® Discrete State-Space

® Discrete-Time Integrator

® Discrete Transfer Function

® Discrete Zero-Pole

® Memory

® Unit Delay

These block types require persistent memory to store values representing the
state of the block between consecutive time intervals. By default, such values
are stored in a data type work vector. This vector is usually referred to as the
DWork vector. It is represented in generated code as rtDWork, a global data
structure. For further information on the DWork vector, see “Block State and
Work Vector Functions” in the Target Language Compiler Reference Guide.

If you want to interface a block state to your hand-written code, you can specify
that the state is to be stored in a location other than the DWork vector. You do
this by assigning a storage class to the block state.

You can also define a symbolic name, to be used in code generation, for a block
state.

Block States: Storing and Interfacing

Block State Storage Classes
The storage class property of a block state specifies how Real-Time Workshop

declares and stores the state in a variable. Storage class options for block states
are similar to those for signals. The available storage classes are:

® Auto

® ExportedGlobal

® ImportedExtern

® ImportedExternPointer

Default Storage Class

Auto is the default storage class. Auto is the appropriate storage class for states
that you do not need to interface to external code. States with Auto storage
class are stored as members of the Dwork vector.

You can assign a symbolic name to states with Auto storage class. If you do not
supply a name, Real-Time Workshop generates one, as described in “Symbolic
Names for Block States” on page 5-51.

Explicitly Assigned Storage Classes

Block states with storage classes other than Auto are stored in unstructured
global variables, independent of the Dwork vector. These storage classes are
appropriate for states that you want to interface to external code. The following
storage classes are available for states:

® ExportedGlobal: The state is stored in a global variable. model private.h
exports the variable. States with ExportedGlobal storage class must have
unique names.

® ImportedExtern: model private.h declares the state as an extern variable.
Your code must supply the proper variable definition. States with
ImportedExtern storage class must have unique names.

® ImportedExternPointer: model private.h declares the state as an extern
pointer. Your code must supply the proper pointer variable definition. States
with ImportedExternPointer storage class must have unique names.

Table 5-10, State Properties Options and Generated Code, gives examples of
variable declarations and the code generated for block states with each type of
storage class.

5-49

5 Working with Data Structures

5-50

You can assign a symbolic name to states with any of the above storage classes.
If you do not supply a name, Real-Time Workshop generates one, as described
in “Symbolic Names for Block States” on page 5-51.

The next section describes how to use the State Properties dialog box to assign
storage classes to block states.

Using the State Properties Dialog Box to Interface
States to External Code

The State Properties dialog box lets you interface a block’s state to external
code by assigning a storage class other than Auto (i.e., ExportedGlobal,
ImportedExtern, or ImportedExternPointer) to the state.

Set the storage class as follows:

1 In your Simulink block diagram, select the desired block. Then select State
properties from the Edit menu of your model. This opens the State
Properties dialog box.

Alternatively, you can right-click the block, and select State properties
from the pull-down menu.

This picture shows the default settings of the State Properties dialog box.

<) State Properties: =] 3

State code generation options

State name:

RTw storage class: IAUtU jv

B storage pe qualiier:

QK | Eancell Help | Aol |

2 Select the desired storage class (ExportedGlobal, ImportedExtern, or

ImportedExternPointer) from the RTW storage class menu.

3 Optional: For storage classes other than Auto, you can enter a storage type

qualifier such as const or volatile in the RTW storage type qualifier

Block States: Storing and Interfacing

field. Note that Real-Time Workshop does not check this string for errors;
whatever you enter is included in the variable declaration.

4 Click Apply and close the dialog box.

Symbolic Names for Block States
To determine the variable or field name generated for a block’s state, you can
either:

¢ Use a default name generated by Real-Time Workshop.
or

¢ Define a symbolic name via the State Name field of the State Properties
dialog box.

Default Block State Naming Convention

If you do not define a symbolic name for a block state, Real-Time Workshop
uses the following default naming convention:

BlockType#_DSTATE
where

® BlockType is the name of the block type (e.g., Discrete Filter).

® #1is a unique ID number (#) assigned by Real-Time Workshop if multiple
instances of the same block type appear in the model. The ID number is
appended to BlockType.

® DSTATE is a string that is always appended to the block type and ID number.

For example, consider the model shown in Figure 5-13.

5-51

5 Working with Data Structures

5-52

DizcPulze DiscFilt

1

1+0.5271
Another Filt

Figure 5-13: Model with Two Discrete Filter Block States

We will examine code generated for the states of the two Discrete Filter blocks.
Assume that:
® Neither block’s state has a user-defined name.

® The upper Discrete Filter block has Auto storage class (and is therefore
stored in the DWork vector).

¢ The lower Discrete Filter block has ExportedGlobal storage class.

The initialization code for the states of the two Discrete Filter blocks would be
as shown in the following code fragment.

/* DiscreteFilter Block: <Root>/Discrete Filter */
rtDWork.Discrete Filter DSTATE = 0.0;

/* DiscreteFilter Block: <Root>/Discrete Filter1 */
Discrete Filteri1 DSTATE = 0.0;

User-Defined Block State Names

Using the State Properties dialog box, you can define your own symbolic name
for a block state. To do this:

1 Select the desired block. Then select State properties from the Edit menu
of your model. This opens the State Properties dialog box.

Alternatively, you can right-click on the block, and select State properties
from the pull-down menu.

2 Enter the symbolic name into the State name field of the State Properties
dialog box. In this picture, the state name Top_filter is entered.

Block States: Storing and Interfacing

<) State Properties: Top_filter =] 3
State code generation options
State name:
I Top_filker
RTW storage class: IAUtU 'l

B storage pe qualiier:

QK | Eancell Help | Aol |

3 Click Apply and close the dialog box.

The following state initialization code was generated from the example model
shown in Figure 5-7, under the following conditions:

® The upper Discrete Filter block has the state name Top_filter, and Auto
storage class (and is therefore stored in the DWork vector.)

¢ The lower Discrete Filter block has the state name Lower_filter, and
ExportedGlobal storage class.

/* DiscreteFilter Block: <Root>/Discrete Filter */
rtbDWork.Top_filter = 0.0;

/* DiscreteFilter Block: <Root>/Discrete Filteri */
Lower_filter = 0.0;

Block States and Simulink Signal Objects

If you are not familiar with Simulink data objects and signal objects, you
should read “Simulink Data Objects and Code Generation” on page 5-32 before
reading this section.

You can associate a block state with a signal object, and control code generation
for the block state through the signal object. To do this:

1 Instantiate the desired signal object, and set its RTWInfo.StorageClass
property as you require.

5-53

5 Working with Data Structures

5-54

2 Open the State Properties dialog box for the block whose state you want to
associate with the signal object. Enter the name of the signal object into the
State name field.

3 Make sure that the storage class and type qualifier settings of the block’s
State Properties dialog box are compatible with those of the signal object.
See “Resolving Conflicts in Configuration of Parameter and Signal Objects”
on page 5-43.

4 Click Apply and close the dialog box.

Note When associating a block state with a signal object, the mapping
between the block state and the signal object must be one-to-one. If two or
more identically named entities, such as a block state and a signal, map to the
same signal object, the name conflict will be flagged as an error at code
generation time.

Block States: Storing and Interfacing

Summary of State Storage Class Options

Table 5-10 shows, for each state storage class option, the variable declaration
and MdlInitialize code generated for a Discrete Filter block state. The block
state has the user-defined state name filt state.

Table 5-10: State Properties Options and Generated Code

Storage Declaration Code

Class

Auto typedef struct D_Work_tag { rtDWork.filt_state = 0.0;
real T filt_state;
struct {

int_T ClockTicksCounter;
} DiscPulse_IWORK;
} D_Work;
(declared in model . h)

/* Data Type Work (DWork)
Structure */

D _Work rtDWork;

(declared in model .c)

Exported extern real T filt_state; filt_state = 0.0;
Global (declared in model private.h)

Imported extern real T filt_state; filt state = 0.0;
Extern (declared in model private.h)

Imported extern real T *filt state; *(filt_state) = 0.0;
Extern (declared in model private.h)

Pointer

5-55

5 Working with Data Structures

5-56

Storage Classes for Data Store Memory Blocks

You can control how Data Store Memory blocks in your model are stored and
represented in the generated code by assigning storage classes and type
qualifiers. You do this in almost exactly the same way you assign storage
classes and type qualifiers for block states.

Data Store Memory blocks, like block states, have Auto storage class by
default, and their memory is stored within the DWork vector. The symbolic
name of the storage location is based on the block name.

Note that you can generate code from multiple Data Store Memory blocks that
have the same name, subject to the following restriction: at most one of the
identically-named blocks can have a storage class other than Auto. An error
will be reported if this condition is not met. For blocks with Auto storage class,
Real-Time Workshop generates a unique symbolic name for each block (if
necessary) to avoid name clashes. For blocks with non- Auto storage classes,
Real-Time Workshop simply uses the block name to generate the symbol.

To control the storage declaration for a Data Store Memory block, use the RTW
storage class and RTW storage type qualifier fields of the Data Store
Memory block parameters dialog.

In the following block diagram, a Data Store Write block writes to memory
declared by the Data Store Memory block myData.

2 =
myData myData
Pz

Sine Wawve Data Store Data Store
rite Memarny

Data Store Memory blocks are nonvirtual, as code is generated for their
initialization, and declarationsin model header files. The Data Store Memory
block parameter dialog is shown next. Note that it documents which blocks
write to and read from it.

Storage Classes for Data Store Memory Blocks

=0l

[rata Store Memory

Drefine a memary region for uze by the Data Store Read and Data
Store Write blocks. All Read and Wiite blocks that are in the curent
[subjepstem level or below and have the same data store name will be
abile to read from ar write b this block.

Parameters

D ata store name:

myD ata

[rata store writelw] and read(R] blocks:

[\/]dataStare_myD ata/Data Sto Tite:

I
Initial walue:
|u
RT'w storage class: |40 d
Ei T tppe qualifier:
¥ Interpret vector parameters as 1-0
QK | Cancel | Help | Apply |

Table 5-11 shows code generated for the Data Store Memory block in this
model. The table gives the variable declarations and Md10utputs code
generated for the myData block.

5-57

5 Working with Data Structures

Table 5-11: Storage Class Options for Data Store Memory Blocks and Generated Code

Storage Declaration Code
Class
Auto typedef struct D Work tag { rtDWork.myData = rtb_Sine Wave;
real_T myData;
} D_Work;

(declared in model.h)

/* Data Type Work (DWork)
Structure */

D_Work rtDWork;

(declared in model.c)

Exported extern real T myData; myData = rtb_Sine Wave;
Global (declared in model private.h)

Imported extern real_T myData; myData = rtb_Sine_Wave;
Extern (declared in model private.h)

Imported extern real T *myData; *(myData) = rtb_Sine Wave;
Extern (declared in model_private.h)

Pointer

Data Store Memory and Simulink Signal Objects

If you are not familiar with Simulink data objects and signal objects, you
should read “Simulink Data Objects and Code Generation” on page 5-32 before
reading this section.

You can associate a Data Store Memory block with a signal object, and control
code generation for the block through the signal object. To do this:

1 Instantiate the desired signal object, and set its RTWInfo.StorageClass
property as you require.

5-58

Storage Classes for Data Store Memory Blocks

2 Open the block parameters dialog box for the Data Store Memory block
whose state you want to associate with the signal object. Enter the name of
the signal object into the Data store name field.

3 Make sure that the storage class and type qualifier settings of the block
parameters dialog box are compatible with those of the signal object. See
“Resolving Conflicts in Configuration of Parameter and Signal Objects” on
page 5-43.

4 Click Apply and close the dialog box.

Note When associating a Data Store Memory block with a signal object, the
mapping between the Data store name and the signal object name must be
one-to-one. If two or more identically named entities map to the same signal
object, the name conflict will be flagged as an error at code generation time.

5-59

5 Working with Data Structures

5-60

External Mode

In external mode, Real-Time Workshop establishes a communications link between a model running
in Simulink and code executing on a target system. Further details on external mode are provided
elsewhere in this documentation: Chapter 14, “Creating an External Mode Communication Channel”
contains advanced information for those who want to implement their own external mode
communications layer. You may want to read it to gain increased insight into the architecture and
code structure of external mode communications. In addition, Chapter 12, “Targeting Tornado for
Real-Time Applications” discusses the use of external mode in the VxWorks Tornado environment.
The following discussion of external mode covers these major topics:

Introduction (p. 6-2) Summary of external mode features and architecture

Using the External Mode User Describes all elements of the external mode user interface
Interface (p. 6-3)

External Mode Compatible Blocks and Types of blocks that receive and view signals in external
Subsystems (p. 6-19) mode

External Mode Communications Summary of the communications process between
Overview (p. 6-23) Simulink and the target program

The TCP/IP Implementation (p. 6-26) Features, bundled targets, and techniques for using
external mode protocol via TCP/IP

Limitations of External Mode (p. 6-33) External mode restrictions imposed by the structure of a
model

6 External Mode

6-2

Introduction

External mode allows two separate systems — a host and a target — to
communicate. The host is the computer where MATLAB and Simulink are
executing. The target is the computer where the executable created by
Real-Time Workshop runs.

The host (Simulink) transmits messages requesting the target to accept
parameter changes or to upload signal data. The target responds by executing
the request. External mode communication is based on a client/server
architecture, in which Simulink is the client and the target is the server.

External mode lets you:

® Modify, or tune, block parameters in real time. In external mode, whenever
you change parameters in the block diagram, Simulink downloads them to
the executing target program. This lets you tune your program’s parameters
without recompiling. In external mode, the Simulink model becomes a
graphical front end to the target program.

® View and log block outputs in many types of blocks and subsystems. You can
monitor and/or store signal data from the executing target program, without
writing special interface code. You can define the conditions under which
data is uploaded from target to host. For example, data uploading could be
triggered by a selected signal crossing zero in a positive direction.
Alternatively, you can manually trigger data uploading.

External mode works by establishing a communication channel between
Simulink and code generated by Real-Time Workshop. This channel is
implemented by a low-level transport layer that handles physical transmission
of messages. Both Simulink and the generated model code are independent of
this layer. The transport layer and the code directly interfacing to the transport
layer are isolated in separate modules that format, transmit, and receive
messages and data packets.

This design makes it possible for different targets to use different transport
layers. For example, the GRT, GRT malloc, ERT, and Tornado targets support
host/target communication via TCP/IP, whereas the xPC Target supports both
RS232 (serial) and TCP/IP communication. The Real-Time Windows Target
implements external mode communication via shared memory.

Using the External Mode User Interface

Using the External Mode User Interface

This section discusses the elements of the Simulink and Real-Time Workshop

user interface that control the operation of external mode. These elements
include:

® External mode related menu items in Simulation and Tools menus and in
the Simulink toolbar.

¢ External Mode Control Panel

® Target Interfacing

¢ External Signal Uploading and Triggering

® Data Archiving

External Mode Related Menu and Toolbar Iltems

To communicate with a target program, the model must be operating in
external mode. The Simulation menu and the toolbar provide two ways to
enable external mode:

¢ Select External from the Simulation menu.

¢ Select External from the simulation mode menu in the toolbar. The
simulation mode menu is shown in this picture.

] ext_examplel 10l =l
File Edit “iew Simulation Format Tools Help
DIZEHS | VB2 e HBS o B

Mormal

Acoelerator ~@—— Simulation mode menu

Zain A Scope A

Sine Wawve

Zain B Scope B

St the cument Simulink Acc[100% [[[odeds i

Once external mode is enabled, you can use the Simulation menu or the
toolbar to connect to and control the target program.

6-3

6 External Mode

6-4

Note You can enable external mode, and simultaneously connect to the
target system, by using the External Mode Control Panel. See “External
Mode Control Panel” on page 6-8.

Simulation Menu

When Simulink is in external mode, the upper section of the Simulation menu
contains external mode options. Initially, Simulink is disconnected from the
target program, and the menu displays the options shown in this picture.

Start realtime code [t 1]
Connect to target
Simulation parameters... Chil+E
Mechanical environment...
Mormal
Accelerator

v External

Figure 6-1: Simulation Menu External Mode Options
(Host Disconnected from Target)

The Connect to target option establishes communication with the target
program. When a connection is established, the target program may be
executing model code, or it may be awaiting a command from the host to start
executing model code.

If the target program is executing model code, the Simulation menu contents
change, as shown in this picture.

Stop real-time code
Dizconnect from target Chil+T
Simulation parameters... Chil+E
I echanical erviranment...
[rral
Scoelerator

v External

Figure 6-2: Simulation Menu External Mode Options
(Target Executing Model Code)

Using the External Mode User Interface

The Disconnect from target option disconnects Simulink from the target
program, which continues to run. The Stop real-time code option terminates
execution of the target program and disconnects Simulink from the target
system.

If the target program is in a wait state, the Start real-time code option is
enabled, as shown in this picture. The Start real-time code option instructs
the target program to begin executing the model code.

Start real-time code
Dizconnect from target Chil+T
Simulation parameters... Chil+E

I echanical erviranment...

[rral
Scoelerator

v External

Figure 6-3: Simulation Menu External Mode Options
(Target Awaiting Start Command)

Toolbar Controls

The Simulink toolbar controls, shown in Figure 6-4, let you control the same
external mode functions as the Simulation menu. Simulink displays external
mode icons to the left of the Simulation mode menu. Initially, the toolbar
displays a Connect to target icon and a disabled Start real-time code button
(shown in Figure 6-4). Click on the Connect to target icon to connect Simulink
to the target program.

6-5

6 External Mode

6-6

File Edit “iew Simulation Format Tools Help

D|@n§|%ﬁ|ﬂg|}?latemal 'l|@|ﬁ||n

Evli.

Sine Wawve

— Simulafion mode menu

Connect to target icon

Scope B

St the cument Simulink Acc[100% [[

[odeds

Start real-time code button

(disabled)

Figure 6-4: External Mode Toolbar Controls (Host Disconnected from Target)

When a connection is established, the target program may be executing model
code, or it may be awaiting a command from the host to start executing model

code.

If the target program is executing model code, the toolbar displays a Stop
real-time code button and a Disconnect from target icon (shown in
Figure 6-5). Click on the Stop real-time code button to command the target

program to stop executing model code and disconnect Simulink from the target
system. Click on the Disconnect from target icon to disconnect Simulink from

the target program while leaving the target program running.

Using the External Mode User Interface

File Edit “iew Simulation Format Tools Help

=0l x|

OEEEEE DR

Evli'

sope A Disconnect from target icon

Sine Wawve

&ain B

Stop real-time code button

Scope B

Ready [100% [

[T=21725000.([ades 4

Figure 6-5: External Mode Toolbar Controls (Target Executing Model Code)

If the target program is in a wait state, the toolbar displays a Start real-time
code button and a Disconnect from target icon (shown in Figure 6-6). Click
on the Start real-time code button to instruct the target program to start

executing model code. Click on the Disconnect from target icon to disconnect

Simulink from the target program.

6-7

6 External Mode

6-8

il

File Edit “iew Simulation Format Tools Help

DIZEHSE| B0z g HBS o B
A

Disconnect from target icon

Evli'

Sine Wawve

Start real-time code bution

Zain B Scope B

Initializing 100% BEEEE [T=0000 [odeS 4

Figure 6-6: External Mode Toolbar Controls (Target in Wait State)

External Mode Control Panel

The External Mode Control Panel provides centralized control of all external

mode features, including:

¢ Host/target connection, disconnection, and target program start/stop
functions, and enabling of external mode

® Arming and disarming the data upload trigger

¢ External mode communications configuration

® Timing of parameter downloads

e Selection of signals from the target program to be viewed and monitored on
the host

® Configuration of data archiving features

Using the External Mode User Interface

Select External mode control panel from the Simulink Tools menu to open
the External Mode Control Panel.

4 | extmode_example: External Mode Control Panel HE These buttons control the connection hetween
P host and manual arming of the data uploading
Connect | Start realtime code A rigger | Irigger.

F. ter tuning

batoh dowrload . -
[batchdovroa - This check box and button control the timing of

Download
[Dot parameter downloads.

Configuration

Target Interface ... | Signal & triggering ... | Drata archiving ... ‘F‘\
These buttons open dialog boxes that configure

Ciose | external mode target interface, signal
properties, and data archiving.

The following sections describe the features supported by the External Mode
Control Panel.

Connecting, Starting, and Stopping

The External Mode Control Panel performs the same connect/disconnect and
start/stop functions found in the Simulation menu and the Simulink toolbar
(see “External Mode Related Menu and Toolbar Items” on page 6-3.)

The Connect/Disconnect button connects to or disconnects from the target
program. The button text changes in accordance with the state of the
connection.

Note that if external mode is not enabled at the time the Connect button is
clicked, the External Mode Control Panel enables external mode
automatically.

The Start/Stop real-time code button commands the target to start or
terminate model code execution. The button is disabled until a connection to
the target is established. The button text changes in accordance with the state
of the target program.

6-9

6 External Mode

Target Interfacing

Clicking the Target Interface button activates the External Target Interface
dialog box.

|extmode_example: External Target Interface M= &3
ME-file options
MEfile for external interface:
| et corm ~&——— Specify name of external interface MEX-file here.
MEStfle arquments: Default is ext_comm.

|

Enter optional arguments to the external interface MEX-file here.

The External Target Interface dialog box lets you specify the name of a
MEX-file that implements host/target communications. This is known as the
external interface MEX-file. The fields of the External Target Interface dialog
box are:

* MEX-file for external interface: Name of the external interface MEX-file.
The default is ext_comm, the TCP/IP-based external interface file provided
for use with the GRT, GRT malloc, ERT, and Tornado targets

Custom or third-party targets may use a different external interface
MEX-file.

* MEX-file arguments: Arguments for the external interface MEX-file. For
example, ext_comm allows three optional arguments: the network name of
your target, the verbosity level, and a TCP/IP server port number.

See “The External Interface MEX-File” on page 6-28 for details on ext_comm
and its arguments.

6-10

Using the External Mode User Interface

External Signal Uploading and Triggering

Clicking the Signal & triggering button activates the External Signal &
Triggering dialog box.

+ simple_ext_mode: External Signal & Triggering

Signal zelection

Elock Path
[-] W Select al

simple ext mode/Display

% Display
¥ Scope simple_ext mode/3cope (3 [=F= |

¥ Scopel simple_ext mode/3copel

¥ theSink simple_ext_mode/theSink o

& aff

Trigger zignal |

LI Goto block |
Trigger
Saurce: Imanual 7| Mode: Inormal |= || T sirat Rt | 1 Element] any
Duration: [1000 Delay: [0 jl
I At when connect to target [Mirestion: Irising VI [Lewvel: I 1] Hialdeaff; I 1]
E'F!everté Help | Apply | Close |

Figure 6-7: Default Settings of the External Signal & Triggering Dialog Box

The External Signal & Triggering dialog box displays a list of all blocks and
subsystems in your model that support external mode signal uploading. See
“External Mode Compatible Blocks and Subsystems” on page 6-19 for
information on which types of blocks are external mode compatible.

The External Signal & Triggering dialog box lets you select which signals are
collected from the target system and viewed in external mode. It also lets you
select a signal that triggers uploading of data when certain signal conditions
are met, and define the triggering conditions.

6-11

6 External Mode

Default Operation

Figure 6-7 shows the default settings of the External Signal and Triggering
dialog box. The default operation of the External Signal and Triggering
dialog box is designed to simplify monitoring the target program. If you use the
default settings, you do not need to preconfigure signals and triggers. Simply
start the target program and connect the Simulink model to it. All external
mode compatible blocks will be selected and the trigger will be armed. Signal
uploading will begin immediately upon connection to the target program.

The default configuration is:

* Arm when connect to target: on
® Trigger Mode: normal
® Trigger Source: manual

® Select all: on

Signal Selection

All external mode compatible blocks in your model appear in the Signal
selection list of the External Signal & Triggering dialog box. You use this list
to select signals to be viewed. An X appears to the left of each selected block’s
name.

The Select all check box selects all signals. By default, Select all is on.

If Select all is off, you can select or deselect individual signals using the on and
off radio buttons. To select a signal, click on the desired list entry and click the
on radio button. To deselect a signal, click on the desired list entry and click
the off radio button. Alternatively, you can double-click a signal in the list to
toggle between selection and deselection.

The Clear all button deselects all signals.

Trigger Options

The Trigger panel located at the bottom left of the External Signal &
Triggering dialog box contains options that control when and how signal data
is collected (uploaded) from the target system. These options are:

6-12

Using the External Mode User Interface

® Source: manual or signal. Selecting manual directs external mode to start
logging data when the Arm trigger button on the External Mode Control
Panel is clicked.

Selecting signal tells external mode to start logging data when a selected
trigger signal satisfies trigger conditions specified in the Trigger signal
panel. When the trigger conditions are satisfied (that is, the signal crosses
the trigger level in the specified direction) a trigger event occurs. If the
trigger is armed, external mode monitors for the occurrence of a trigger
event. When a trigger event occurs, data logging begins.

* Arm when connect to target: If this option is selected, external mode arms
the trigger automatically when Simulink has connected to the target. If the
trigger source is manual, uploading begins immediately. If the trigger mode
is signal, monitoring of the trigger signal begins immediately, and
uploading begins upon the occurrence of a trigger event.

If Arm when connect to target is not selected, you must manually arm the
trigger by clicking the Arm trigger button in the External Mode Control
Panel.

¢ Duration: The number of base rate steps for which external mode logs data
after a trigger event. For example, if the fastest rate in the model is 1 second
and a signal sampled at 1 Hz is being logged for a duration of 10 seconds,
then external mode will collect 10 samples. If a signal sampled at 2 Hz is
logged, only 5 samples will be collected.

® Mode: normal or one-shot. In normal mode, external mode automatically

rearms the trigger after each trigger event. In one - shot mode, external mode
collects only one buffer of data each time you arm the trigger. See “Data

Archiving” on page 6-15 for further details on the effect of the Mode setting.

¢ Delay: The delay represents the amount of time that elapses between a
trigger occurrence and the start of data collection. The delay is expressed in
base rate steps, and can be positive or negative. A negative delay corresponds
to pretriggering. When the delay is negative, data from the time preceding
the trigger is collected and uploaded.

Trigger Signal Selection

You can designate one signal as a trigger signal. To select a trigger signal,
select signal from the Trigger Source menu. This activates the Trigger
signal panel (see Figure 6-8). Then, click on the desired entry in the Signal
selection list, and click the Trigger signal button.

6-13

6 External Mode

When a signal is selected as a trigger, a T appears to the left of the block’s name
in the Signal selection list. In Figure 6-8, the Pilot G force Scope signal is
the trigger. Pilot G force Scope is also selected for viewing, as indicated by
the X to the left of the block name.

+ fl4rtw: External Signal & Triggering M= B3
Signal zelection
Elock Path
Angle of Attack flartw/dngle of Atrack = [Select all
XT Pilot G force Scope fldrtw/Pilot G force Scope Clear all |
Stick Input flartw/3tick Input
& an
" aff

Trigger zignal |
LI Go to block |
Trigger

ey Isignal j Made: Ione-shot j Trigger signal: Port: |1 Element:l ary

1 drtw/Pilot G force Scope -
Duration: [1000 Delay: [0 | i zll
7 m when connect to target Direction: Irising VI Level: I 0 Hold-off: I 0
Fevert | Help | Apply | Cloze |

The Trigger Signal panel

Figure 6-8: Signals & Triggering Window with Trigger Selected
After selecting the trigger signal, you can define the trigger conditions in the

Trigger signal panel, and set the Port and Element fields located on the right
side of the Trigger panel.

6-14

Using the External Mode User Interface

Setting Trigger Conditions

Note The Trigger signal panel and the Port and Element fields of the
External Signal & Trigger dialog box are enabled only when Trigger source
is set to signal.

By default, any element of the first input port of the specified trigger block can
cause the trigger to fire (i.e., Port 1, any element). You can modify this behavior
by adjusting the Port and Element fields located on the right side of the
Trigger panel. The Port field accepts a number or the keyword last. The
Element field accepts a number or the keywords any and last.

The Trigger Signal panel defines the conditions under which a trigger event
will occur. These are:

® Level: Specifies a threshold value. The trigger signal must cross this value
in a designated direction to fire the trigger. By default, the level is 0.

¢ Direction: rising, falling, or either. This specifies the direction in which
the signal must be travelling when it crosses the threshold value. The default
is rising.

¢ Hold-off: Applies only to normal mode. Expressed in base rate steps,
Hold-off is the time between the termination of one trigger event and the
rearming of the trigger.

Data Archiving
Clicking the Data Archiving button of the External Mode Control Panel
opens the External Data Archiving dialog box.

This panel supports the following features:

Directory Notes. Use this option to add annotations that pertain to a collection of
related data files in a directory.

Clicking the Edit directory note button opens the MATLAB editor. Place
comments that you want saved to a file in the specified directory in this
window. By default, the comments are saved to the directory last written to by
data archiving.

6-15

6 External Mode

File Notes. Clicking Edit file note opens a file finder window that is, by default,
set to the last file to which you have written. Selecting any MAT-file opens an
edit window. Add or edit comments in this window that you want saved with
your individual MAT-file.

Data Archiving. Clicking the Enable Archiving check box activates the
automated data archiving features of external mode. To understand how the
archiving features work, it is necessary to consider the handling of data when
archiving is not enabled. There are two cases, one-shot and normal mode.

In one-shot mode, after a trigger event occurs, each selected block writes its
data to the workspace just as it would at the end of a simulation. If another
one-shot is triggered, the existing workspace data will be overwritten.

In normal mode, external mode automatically rearms the trigger after each
trigger event. Consequently, you can think of normal mode as a series of
one-shots. Each one-shot in this series, except for the last, is referred to as an
intermediate result. Since the trigger can fire at any time, writing intermediate
results to the workspace generally results in unpredictable overwriting of the
workspace variables. For this reason, the default behavior is to write only the
results from the final one-shot to the workspace. The intermediate results are
discarded. If you know that sufficient time exists between triggers for
inspection of the intermediate results, then you can override the default
behavior by checking the Write intermediate results to workspace check box.
Note that this option does not protect the workspace data from being
overwritten by subsequent triggers.

The options in the External Data Archiving dialog box support automatic
writing of logging results, including intermediate results, to disk. Data
archiving provides the following settings:

® Directory: Specifies the directory in which data is saved. External mode
appends a suffix if you select Increment directory when trigger armed.

¢ File: Specifies the filename in which data is saved. External mode appends
a suffix if you select Increment file after one-shot.

¢ Increment directory when trigger armed: External mode uses a different
directory for writing log files each time that you click the Arm trigger
button. The directories are named incrementally; for example: dirnamet,
dirname2, and so on.

6-16

Using the External Mode User Interface

¢ Increment file after one-shot: New data buffers are saved in incremental
files: filename1, filename2, etc. Note that this happens automatically in
normal mode.

* Append file suffix to variable names: Whenever external mode increments
filenames, each file contains variables with identical names. Choosing
Append file suffix to variable name results in each file containing unique
variable names. For example, external mode will save a variable named
xdatain incremental files (file 1,file 2, etc.) as xdata_1, xdata 2, and so
on. This is useful if you want to load the MAT-files into the workspace and
compare variables in MATLAB. Without the unique names, each instance of
xdata would overwrite the previous one in the MATLAB workspace.

This picture shows the External Data Archiving dialog box with archiving
enabled.

.T! extmode_example: External Data Archiving

Drata archiving
¥ Enable archiving

Directary: | I Increment directary when tigger armed
File: | [Increment file after one-shat
B ey e, ™ Append file suffix to variable names

[‘Wiite intermediate results to workspace

Edit file nate...

Hevert| Help | Cloze |

Unless you select Enable archiving, entries for the Directory and File fields
are not accepted.

Parameter Downloading

The batch download check box on the External Mode Control Panel enables
or disables batch parameter changes.

By default, batch download is not enabled. If batch download is not
enabled, changes made directly to block parameters via parameter dialog boxes
are sent to the target when you click the OK or Apply button. Changes to
MATLAB workspace variables are sent when an Update diagram is
performed.

6-17

6 External Mode

Note Opening a dialog box for a source block causes Simulink to pause.
While Simulink is paused, you can edit the parameter values. You must close
the dialog box to have the changes take effect and allow Simulink to continue.

If batch download is enabled, the Download button is enabled. Changes
made to block parameters are stored locally until you click the Download
button. When you click the Download button, the changes are sent in a single
transmission.

When parameter changes have been made and are awaiting batch download,
the External Mode Control Panel displays the message Parameter changes
pending... to the right of the download button. (See Figure 6-9.) This message
disappears after Simulink receives notification from the target that the new
parameters have been installed into the parameter vector of the target system.

The External Mode Control Panel with the batch download option activated
is shown below.

|extmode_example: External Mode Control Panel M= B3

Dizconnect | Stop real-time code Cancel trigger |

F. ter tuning

¥ bateh download

Download | Parameter changes pending - Parameter (hunges pending... message
Configuration appears if unsent parameter value changes
are awaiting download.

Tiaraet nterface ... | Signal&triggering...l Drata archiving ... |

Cloze |

Figure 6-9: External Mode Control Panel in Batch Download Mode

6-18

External Mode Compatible Blocks and Subsystems

External Mode Compatible Blocks and Subsystems

Compatible Blocks

In external mode, you can use the following types of blocks to receive and view
signals uploaded from the target program:

® Scope blocks

® Blocks in the Gauges Blockset
® Display blocks

® To Workspace blocks

® User-written S-Function blocks

An external mode method has been added to the S-function API. This method
allows user-written blocks to support external mode. See
matlabroot/simulink/simstruc.h.

¢ XY Graph blocks

In addition to these types of blocks, you can designate certain subsystems as
Signal Viewing Subsystems and use them to receive and view signals uploaded
from the target program. See “Signal Viewing Subsystems” on page 6-20 for
further information.

External mode compatible blocks and subsystems are selected, and the trigger
is armed, via the External Signal and Triggering dialog box. For example, the
figure below shows two Scope blocks, a Display block, and a Signal Viewing
Subsystem (theSink). All of these are selected and the trigger is set to be armed
when connected to the target program.

6-19

6 External Mode

6-20

+ simple_ext_mode: External Signal & Triggering
Signal zelection
Elock Path
x ext mode/Display ! ¥ Select all
¥ Scope simple_ext mode/3cope (3 [=F= |
¥ Scopel simple_ext mode/3copel
¥ theSink simple_ext_mode/theSink o
& aff
Trigger zignal |
LI Go to block |
Trigger
ey Imanual j Made: Inormal j Tiriggen signal: Eart: |1 Element:l ary
-
Duration: [1000 Delay: [0 :||
¥
i . .
7 m when connect to target [ire st Irising VI [Level: I 0 Haldaff: I]
Hevert Help | Apply | Cloze |

Signal Viewing Subsystems

A Signal Viewing Subsystem is an atomic subsystem that encapsulates
processing and viewing of signals received from the target system. A Signal
Viewing Subsystem runs only on the host, generating no code in the target
system. Signal Viewing Subsystems run in all simulation modes — normal,
accelerated, and external.

Signal Viewing Subsystems are useful in situations where you want to process
or condition signals before viewing or logging them, but you do not want to
perform these tasks on the target system. By using a Signal Viewing
Subsystem, you can generate smaller and more efficient code on the target
system.

Like other external mode compatible blocks, Signal Viewing Subsystems are
displayed in the External Signal and Triggering dialog box.

To declare a subsystem to be a Signal Viewing Subsystem:

External Mode Compatible Blocks and Subsystems

1 Select the Treat as atomic unit option in the Block Parameters dialog box.
See “Nonvirtual Subsystem Code Generation” on page 4-2 for further
information on atomic subsystems.

2 Use the following set_param command to turn the SimvViewingDevice
property on.

set_param('blockname', 'SimViewingDevice','on')
where 'blockname’ is the name of the subsystem.

3 Make sure the subsystem meets the following requirements:

= It must be a pure sink block. That is, it must contain no Outport blocks or
Data Store blocks. It may contain Goto blocks only if the corresponding
from blocks are contained within the subsystem boundaries.

= It must have no continuous states.

The model shown below, sink_examp, contains an atomic subsystem, theSink.

EU’,—""'

Sine Wawve

theSink

The subsystem theSink, shown below, applies a gain and an offset to its input
signal, and displays it on a Scope block.

6-21

6 External Mode

If theSink is declared as a Signal Viewing Subsystem, the generated target
program includes only the code for the Sine Wave block. If theSink is selected
and armed in the External Signal and Triggering dialog box (as shown in
Figure 6-10), the target program uploads the sine wave signal to theSink
during simulation.You can then modify the parameters of the blocks within
theSink and observe their effect upon the uploaded signal.

sink_examp: External Signal & Triggering

Signal zelection

Elock Path
{ theSink zink examp/thedink B ' Select al
(3 [=F= |
an
& aff

Trigger zignal |

LI Go to block |
Trigger
ey Imanual j Made: Inormal j Tiriggen signal: Eart: |1 Element:l ary
Duration: [1000 Delay: [0 éll
7 m when connect to target [ire st Irising VI [Level: I 0 Haldaff: I]
Hevertl Help | Apply | Cloze |

Figure 6-10: Signal Viewing Subsystem Selected in External
Signals & Triggering Dialog Box

Note that if theSink were not declared as a Signal Viewing Subsystem, its
Gain, Constant, and Sum blocks would run as subsystem code on the target
system. The Sine Wave signal would be uploaded to Simulink after being
processed by these blocks, and viewed on sink_examp/theSink/Scope2.
Processing demands on the target system would be increased by the additional
signal processing, and by the downloading of block parameter changes from the
host.

6-22

External Mode Communications Overview

External Mode Communications Overview

This section describes how Simulink and the target program communicate, and
how and when they transmit parameter updates and signal data to each other.

Depending on the setting of the Inline parameters option when the target
program is generated, there are differences in the way parameter updates are
handled. “The Download Mechanism” on page 6-23 describes the operation of
external mode communications with Inline parameters off. “Inlined and
Tunable Parameters” on page 6-24 describes the operation of external mode
with Inline parameters on.

The Download Mechanism

In external mode, Simulink does not simulate the system represented by the
block diagram. By default, when external mode is enabled, Simulink
downloads current values of all parameters to the target system. After the
initial download, Simulink remains in a waiting mode until you change
parameters in the block diagram or until Simulink receives data from the
target.

When you change a parameter in the block diagram, Simulink calls the
external interface MEX-file, passing new parameter values (along with other
information) as arguments.

The external interface MEX-file contains code that implements one side of the
interprocess communication (IPC) channel. This channel connects the
Simulink process (where the MEX-file executes) to the process that is executing
the external program. The MEX-file transfers the new parameter values via
this channel to the external program.

The other side of the communication channel is implemented within the
external program. This side writes the new parameter values into target’s
parameter structure (rtP).

The Simulink side initiates the parameter download operation by sending a
message containing parameter information to the external program. In the
terminology of client/server computing, the Simulink side is the client and the
external program is the server. The two processes can be remote, or they can
be local. Where the client and server are remote, a protocol such as TCP/IP is
used to transfer data. Where the client and server are local, shared memory can
be used to transfer data.

6-23

6 External Mode

The following diagram illustrates this relationship

Simulink calls the external interface MEX-file whenever you change
parameters in the block diagram. The MEX-file then downloads the
parameters to the external program via the communication channel.

Simulink Process

External
Program
Process

mexFunction

Client
IPC Code

External Interface
MEX-file (ext_comin)

\/

I Interprocess Communication Channel |

External Program

Server
IPC Code

A ext_svr

Figure 6-11: External Mode Architecture

Inlined and Tunable Parameters

By default, all parameters (except those listed in “Limitations of External
Mode” on page 6-33) in an external mode program are tunable; that is, you can
change them via the download mechanism described in this section.

If you select the Inline parameters option (on the Advanced page of the
Simulation Parameters dialog box), Real-Time Workshop embeds the
numerical values of model parameters (constants), instead of symbolic

6-24

External Mode Communications Overview

parameter names, in the generated code. Inlining parameters generates
smaller and more efficient code. However, inlined parameters, since they are
effectively transformed into constants, are not tunable.

Real-Time Workshop lets you improve overall efficiency by inlining most
parameters, while at the same time retaining the flexibility of run-time tuning
for selected parameters that are important to your application. When you
inline parameters, you can use the Model Parameter Configuration dialog to
remove individual parameters from inlining and declare them to be tunable. In
addition, the Model Parameter Configuration dialog offers you options for
controlling how parameters are represented in the generated code.

For further information on tunable parameters please see “Parameters:
Storage, Interfacing, and Tuning” on page 5-2.

Automatic Parameter Uploading on Host/Target Connection

Each time Simulink connects to a target program that was generated with
Inline parameters on, the target program uploads the current value of its
tunable parameters (if any) to the host. These values are assigned to the
corresponding MATLAB workspace variables. This procedure ensures that the
host and target are synchronized with respect to parameter values.

All workspace variables required by the model must be defined to an initial
value at the time of host/target connection. Otherwise the uploading cannot
proceed and an error will result. Once the connection is made, these variables
are updated to reflect the current parameter values on the target system.

Note that automatic parameter uploading takes place only if the target
program was generated with Inline parameters on. “The Download
Mechanism” on page 6-23 describes the operation of external mode
communications with Inline parameters off.

6-25

6 External Mode

6-26

The TCP/IP Implementation

Real-Time Workshop provides code to implement both the client and server
side based on TCP/IP. You can use the socket-based external mode
implementation provided by Real-Time Workshop with the generated code,
provided that your target system supports TCP/IP.

A low-level transport layer handles physical transmission of messages. Both
Simulink and the model code are independent of this layer. Both the transport
layer and code directly interfacing to the transport layer are isolated in
separate modules that format, transmit, and receive messages and data
packets.

This design makes it possible for different targets to use different transport
layers. For example, the GRT, GRT malloc, ERT, and Tornado targets support
host/target communication via TCP/IP, whereas the xPC target supports both
RS232 (serial) and TCP/IP communication.

Using the TCP/IP Implementation

This section discusses how to use the TCP/IP-based client/server
implementation of external mode with real-time programs on a UNIX or PC
system. Chapter 12, “Targeting Tornado for Real-Time Applications”
illustrates the use of external mode in the Tornado environment.

In order to use Simulink external mode, you must:
® Specify the name of the external interface MEX-file in the External Target
Interface dialog box. By default, this is ext_comm.

® Configure the template makefile so that it links the proper source files for
the TCP/IP server code and defines the necessary compiler flags when
building the generated code.

¢ Build the external program.
¢ Run the external program.

® Set Simulink to external mode and connect to the target.

The TCP/IP Implementation

This figure shows the structure of the TCP/IP-based implementation.

UNIX or PC Host Target

Simulink in External Mode Target Code

v

Process block

parameter
| Update block

‘ ext_comm ‘ %

ext_svr.c

TCP/IP on Ethernet
— /
— - /
- / /
e s !
/
External Mode Message Format /
/

‘ header‘ data in target format

Figure 6-12: TCP/IP-Based Client/Server Implementation for External Mode

The following sections discuss the details of how to use the external mode of
Simulink.

6-27

6 External Mode

The External Interface MEX-File

You must specify the name of the external interface MEX-file in the External
Target Interface dialog box. Select Target interface... on the External Mode
Control Panel to activate this dialog, shown below.

|extmode_example: External Target Interface [_ [=]
ME-file options

MEfile for external interface:

I ext_comm -

| Enterthe name of the external interface MEX-file in
the box (you do not need fo enter the .mex
NS5 el extension). This file must be in the current

I directory or in a directory that is on your MATLAB

()8 | Cancel | pﬂth

The default external interface MEX-file is ext_comm. ext_comm implements
TCP/TP-based communications. ext_comm has three optional arguments,
discussed in the next section.

MEX-File Optional Arguments
In the External Target Interface dialog box, you can specify optional
comma-delimited arguments that are passed to the MEX-file. These are:

® Target network name: the network name of the computer running the
external program. By default, this is the computer on which Simulink is
running. The name can be:

= a string delimited by single quotes, such as 'myPuter'
= an IP address delimited by single quotes, such as '148.27.151.12'

® Verbosity level: controls the level of detail of the information displayed
during the data transfer. The value is either 0 or 1 and has the following
meaning:

0 — no information

1 — detailed information

e TCP/IP server port number: The default value is 17725. You can change the
port number to a value between 256 and 65535 to avoid a port conflict if
necessary.

6-28

The TCP/IP Implementation

You must specify these options in order. For example, if you want to specify the
verbosity level (the second argument), then you must also specify the target
host name (the first argument).

Note that you can specify command line options to the external program. See
“Running the External Program” on page 6-29 for more information.

External Mode Compatible Targets

The ERT, GRT, GRT malloc, and Tornado targets support external mode. To
enable external mode code generation, check External mode in the
target-specific code generation options section of the Real-Time Workshop
pane. The following illustration shows the GRT code generation options with
external mode enabled.

=10l

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Category: I GRT code generation options j Generate codel

Options

MAT-file wariable name modifier: | r_ j
¥ Esternal mode

¥ Use ritdodel data structure

¥ lgnore custom storage classes

QK | Eancell Help | Apply |

Running the External Program

The external program must be running before you can use Simulink in external
mode. To run the external program, you type a command of the form

model -opti ... -optN

where model is the name of the external program and -opt7 ... -optN are
options. (See “Command Line Options for the External Program” on page 6—

6-29

6 External Mode

31). In the examples in this section, we assume the name of the external
program to be ext_example.

Running the External Program Under Windows

In the Windows environment, you can run the external programs in either of
the following ways:

® Open a Command Prompt window. At the command prompt, type the name
of the target executable, followed by any options, as in the following example.

ext_example -tf inf -w

e Alternatively, you can launch the target executable from the MATLAB
command prompt. In this case the command must be preceded by an
exclamation point (!) and followed by an ampersand (&) , as in the following
example.

lext_example -tf inf -w &

Note that the ampersand (&) causes the operating system to spawn another
process to run the target executable.

Running the External Program Under UNIX

In the UNIX environment, you can run the external programs in either of the
following ways:

® Open an an Xterm window. At the command prompt, type the name of the
target executable, followed by any options, as in the following example.

ext_example -tf inf -w

¢ Alternatively, you can launch the target executable from the MATLAB
command prompt. In the UNIX environment, if you start the external
program from MATLAB, you must run it in the background so that you can
still access Simulink. The command must be preceded by an exclamation
point (!) and followed by an ampersand (&), as in the following example.

lext_example -tf inf -w &

runs the executable from MATLAB by spawning another process to run it.

6-30

The TCP/IP Implementation

Command Line Options for the External Program

External mode target executables generated by Real-Time Workshop support
the following command line options:

® -tf n option

The -tf option overrides the stop time set for the model in Simulink. The
argument n specifies the number of seconds the program will run. The value
inf directs the model to run indefinitely. In this case, the model code will run
until the target program receives a stop message from Simulink.

The following example sets the stop time to 10 seconds.

ext_example -tf 10

Note You may use the -tf option with GRT, GRT malloc, ERT, and Tornado
targets. If you are implementing a custom target and want to support the -tf
option, you must implement the option yourself. See “Creating an External
Mode Communication Channel” on page 14-94 for further information.

® -w option
The -w option instructs the target program to enter a wait state until it
receives a message from the host. At this point, the target is running, but not
executing the model code. The start message is sent when you select Start
real-time code from the Simulation menu or click the Start real-time code
button in the External Mode Control Panel.

Use the -w option if you want to view data from time step 0 of the target
program execution, or if you want to modify parameters before the target
program begins execution of model code.

® -port noption

the -port option specifies the TCP/IP port number, n, for the target program.
The port number of the target program must match that of the host. The
default port number is 17725. The port number must be a value between 256
and 65535.

6-31

6 External Mode

Note The -w and -port options are supported by the TCP/IP transport layer
modules shipped with Real-Time Workshop. By default, these modules are
linked into external mode target executables. If you are implementing a
custom external mode transport layer and want to support these options, you
must implement them in your code. See “Creating an External Mode
Communication Channel” on page 14-94 for further information. See
matlabroot/rtw/c/src/ext_transport.c for example code.

Implementing an External Mode Protocol Layer

If you want to implement your own transport layer for external mode
communication, you must modify certain code modules provided by Real-Time
Workshop, and rebuild ext _comm, the external interface MEX-file. This
advanced topic is described in detail in “Creating an External Mode
Communication Channel” on page 14-94.

6-32

Limitations of External Mode

Limitations of External Mode

In general, you cannot change a parameter if doing so results in a change in the
structure of the model. For example, you cannot change:

¢ The number of states, inputs, or outputs of any block

¢ The sample time or the number of sample times

® The integration algorithm for continuous systems

¢ The name of the model or of any block

® The parameters to the Fen block

If you cause any of these changes to the block diagram, then you must rebuild
the program with newly generated code.

However, parameters in transfer function and state space representation
blocks can be changed in specific ways:

® The parameters (numerator and denominator polynomials) for the Transfer
Fen (continuous and discrete) and Discrete Filter blocks can be changed (as
long as the number of states does not change).

® Zero entries in the State Space and Zero Pole (both continuous and discrete)
blocks in the user-specified or computed parameters (i.e., the A, B, C, and D
matrices obtained by a zero-pole to state-space transformation) cannot be
changed once external simulation is started.

¢ In the State Space blocks, if you specify the matrices in the controllable
canonical realization, then all changes to the A, B, C, D matrices that
preserve this realization and the dimensions of the matrices are allowed.

Note Opening a dialog box for a source block causes Simulink to pause.
While Simulink is paused, you can edit the parameter values. You must close
the dialog box to have the changes take effect and allow Simulink to continue.

Error Conditions

If the Simulink block diagram does not match the external program, Simulink
displays an error box informing you that the checksums do not match (i.e., the

6-33

6 External Mode

model has changed since you generated code). This means you must rebuild the
program from the new block diagram (or reload the correct one) in order to use
external mode.

If the external program is not running, Simulink displays an error informing
you that it cannot connect to the external program.

6-34

Program Architecture

Code is generated by Real-Time Workshop in two styles, depending whether a target is embedded or
not. In addition, the structure of code is affected by whether a multitasking environment is available
for execution, and on what system and applications modules must be incorporated. The following
sections describe these architectural distinctions:

Introduction (p. 7-2) Code styles and targets appropriate for development of
rapid prototyping and embedded systems

Model Execution (p. 7-4) How code generated from models executes, including
singletasking and multitasking execution, timing, data
structures, entry points, and differences between rapid
prototyping and embedded code

Rapid Prototyping Program Overal architecture and individual components of
Framework (p. 7-23) programs generated by rapid prototyping targets
Embedded Program Framework Overview of the architecture of programs generated by
(p. 7-34) the Real-Time Workshop Embedded Coder.

For a detailed discussion of the structure of embedded real-time code, see the Real-Time Workshop
Embedded Coder documentation.

7 Program Architecture

7-2

Introduction

Real-Time Workshop generates two styles of code. One code style is suitable for
rapid prototyping (and simulation via code generation). The other style is
suitable for embedded applications. This chapter discusses the program
architecture, that is, the structure of code generated by Real-Time Workshop,
associated with these two styles of code. The table below classifies the targets
shipped with Real-Time Workshop. For related details about code style and
target characteristics, see “Choosing a Code Format for Your Application” on
page 3-3.

Table 7-1: Code Styles Listed By Target

Target Code Style (using C unless noted)
Real-Time Workshop Embedded — useful as a starting point
Embedded Coder target when using the generated C code in an

embedded application.

Generic real-time (GRT) Rapid prototyping — nonreal-time

target simulation on your workstation. Useful
as a starting point for creating a rapid
prototyping real-time target that does not
use real-time operating system tasking
primitives. Also useful for validating the
generated code on your workstation.

Real-time malloc target Rapid prototyping — very similar to the
generic real-time (GRT) target except
that this target allocates all model
working memory dynamically rather
than statically declaring it in advance.

Rapid simulation target Rapid prototyping — nonreal-time
simulation of your model on your
workstation. Useful as a high-speed or
batch simulation tool.

S-function target Rapid prototyping — creates a C-MEX
S-function for simulation of your model
within another Simulink model.

Introduction

Table 7-1: Code Styles Listed By Target (Continued)

Target

Code Style (using C unless noted)

Tornado (VxWorks) real-time
target

Real-Time Windows target

xPC target

DOS real-time target

Rapid prototyping — runs model in real
time using the VxWorks real-time
operating system tasking primitives. Also
useful as a starting point for targeting a
real-time operating system.

Rapid prototyping — runs model in
real-time at interrupt level while your PC
is running Microsoft Windows in the
background.

Rapid prototyping — runs model in real
time on target PC running xPC kernel.

Rapid prototyping — runs model in real
time at interrupt level under DOS.

Third-party vendors supply additional targets for Real-Time Workshop.
Generally, these can be classified as rapid prototyping targets. For more
information about third-party products, see the MATLAB Connections Web
page: http://www.mathworks.com/products/connections.

This chapter is divided into three sections. The first section discusses model
execution; the second section discusses the rapid prototyping style of code; and
the third section discusses the embedded style of code.

7-3

7 Program Architecture

7-4

Model Execution

Before looking at the two styles of generated code, you need to have a high-level
understanding of how the generated model code is executed. Real-Time
Workshop generates algorithmic code as defined by your model. You may
include your own code into your model via S-functions. S-functions can range
from high-level signal manipulation algorithms to low-level device drivers.

Real-Time Workshop also provides a run-time interface that executes the
generated model code. The run-time interface and model code are compiled
together to create the model executable. The diagram below shows a high-level
object-oriented view of the executable.

Execution driver for model code,
operating system interface routines,
I/0O dependent routines,

solver and data logging routines.

Model code
and S-functions

Run-Time Interface

Figure 7-1: The Object-Oriented View of a Real-Time Program

In general, the conceptual design of the model execution driver does not change
between the rapid prototyping and embedded style of generated code. The
following sections describe model execution for singletasking and multitasking
environments both for simulation (nonreal-time) and for real-time. For most
models, the multitasking environment will provide the most efficient model
execution (i.e., fastest sample rate).

The following concepts are useful in describing how models execute:

¢ Initialization — Initializing the run-time interface code and the model code.

¢ ModelOutputs — Calling all blocks in your model that have a time hit at the
current point in time and having them produce their output. ModelOutputs
can be done in major or minor time steps. In major time steps, the output is
a given simulation time step. In minor time steps, the run-time interface
integrates the derivatives to update the continuous states.

Model Execution

® ModelUpdate — Calling all blocks in your model that have a sample hit at
the current point in time and having them update their discrete states or
similar type objects.

® ModelDerivatives — Calling all blocks in your model that have continuous

states and having them update their derivatives. ModelDerivatives is only
called in minor time steps.

The pseudocode below shows the execution of a model for a singletasking
simulation (nonreal-time).

main()
{
Initialization
While (time < final time)
ModelOutputs -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate -- Major time step.
Integrate: -- Integration in minor time step for
-- models with continuous states.
ModelDerivatives
Do O or more:
ModelOutputs
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.
EndIntegrate
EndWhile
Shutdown

}

The initialization phase begins first. This consists of initializing model states
and setting up the execution engine. The model then executes, one step at a
time. First ModelOutputs executes at time ¢, then the workspace I/O data is
logged, and then ModelUpdate updates the discrete states. Next, if your model
has any continuous states, ModelDerivatives integrates the continuous states’

derivatives to generate the states for time ¢ = t + h, where h is the step

new

size. Time then moves forward to ¢,,,, and the process repeats.

w

During the ModelOutputs and ModelUpdate phases of model execution, only
blocks that have hit the current point in time execute. They determine if they

7-5

7 Program Architecture

have hit by using a macro (ssIsSampleHit, or ssIsSpecialSampleHit) that
checks for a sample hit.

The pseudocode below shows the execution of a model for a multitasking
simulation (nonreal-time).

main()
{
Initialization
While (time < final time)
ModelOutputs(tid=0) -- Major time step.
LogTXY -- Log time, states, and root
-- outports.
ModelUpdate (tid=1) -- Major time step.
Integrate -- Integration in minor time step for
-- models with continuous states.
ModelDerivatives

Do 0 or more:
ModelOutputs(tid=0)
ModelDerivatives
EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.
EndIntegrate
For i=1:NumTids
ModelOutputs(tid=i) -- Major time step.
ModelUpdate(tid=i) -- Major time step.
EndFor
EndWhile
Shutdown

}

The multitasking operation is more complex when compared with the
singletasking execution because the output and update functions are
subdivided by the task identifier (tid) that is passed into these functions. This
allows for multiple invocations of these functions with different task identifiers
using overlapped interrupts, or for multiple tasks when using a real-time
operating system. In simulation, multiple tasks are emulated by executing the
code in the order that would occur if there were no preemption in a real-time
system.

7-6

Model Execution

Note that the multitasking execution assumes that all tasks are multiples of
the base rate. Simulink enforces this when you have created a fixed-step
multitasking model.

The multitasking execution loop is very similar to that of singletasking, except
for the use of the task identifier (tid) argument to ModelOutputs and
ModelUpdate. The ssIsSampleHit or ssIsSpecialSampleHit macros use the
tid to determine when blocks have a hit. For example, ModelOutputs (tid=5)
will execute only the blocks that have a sample time corresponding to task
identifier 5.

The pseudocode below shows the execution of a model in a real-time
singletasking system where the model is run at interrupt level.

rtOneStep()
{

Check for interrupt overflow
Enable "rtOneStep" interrupt

ModelOutputs -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate -- Major time step.
Integrate -- Integration in minor time step for models
-- with continuous states.
ModelDerivatives
Do 0 or more
ModelOutputs
ModelDerivatives

EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.
EndIntegrate

}

main()

{
Initialization (including installation of rtOneStep as an
interrupt service routine, ISR, for a real-time clock).
While(time < final time)

Background task.

EndWhile
Mask interrupts (Disable rtOneStep from executing.)
Complete any background tasks.

7-7

7 Program Architecture

7-8

Shutdown
}

Real-time singletasking execution is very similar to the nonreal-time single
tasking execution, except that the execution of the model code is done at
interrupt level.

At the interval specified by the program’s base sample rate, the interrupt
service routine (ISR) preempts the background task to execute the model code.
The base sample rate is the fastest rate in the model. If the model has
continuous blocks, then the integration step size determines the base sample
rate.

For example, if the model code is a controller operating at 100 Hz, then every
0.01 seconds the background task is interrupted. During this interrupt, the
controller reads its inputs from the analog-to-digital converter (ADC),
calculates its outputs, writes these outputs to the digital-to-analog converter
(DAC), and updates its states. Program control then returns to the background
task. All of these steps must occur before the next interrupt.

The following pseudocode shows how a model executes in a real-time
multitasking system (where the model is run at interrupt level).

rtOneStep()
{

Check for interrupt overflow
Enable "rtOneStep" interrupt

ModelOutputs(tid=0) -- Major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate (tid=0) -- Major time step.
Integrate -- Integration in minor time step for

-- models with continuous states.
ModelDerivatives
Do O or more:
ModelOutputs(tid=0)
ModelDerivatives
EndDo (Number of iterations depends upon the solver.)
Integrate derivatives and update continuous states.
EndIntegrate
For i=1:NumTasks
If (hit in task i)
ModelOQutputs(tid=i)

Model Execution

ModelUpdate(tid=1)

EndIf
EndFor
}
main()
{
Initialization (including installation of rtOneStep as an
interrupt service routine, ISR, for a real-time clock).
While(time < final time)
Background task.
EndWhile
Mask interrupts (Disable rtOneStep from executing.)
Complete any background tasks.
Shutdown
}

Running models at interrupt level in real-time multitasking environment is
very similar to the previous singletasking environment, except that overlapped
interrupts are employed for concurrent execution of the tasks.

The execution of a model in a singletasking or multitasking environment when
using real-time operating system tasking primitives is very similar to the
interrupt-level examples discussed above. The pseudocode below is for a
singletasking model using real-time tasking primitives.

tSingleRate()
{
MainLoop:
If clockSem already "given", then error out due to overflow.
Wait on clockSem

ModelOutputs -- Major time step.
LogTXY -- Log time, states and root
--outports
ModelUpdate -- Major time step
Integrate -- Integration in minor time step
-- for models with continuous
-- states.
ModelDeriviatives
Do O or more:
ModelOutputs

7-9

7 Program Architecture

ModelDerivatives
EndDo (Number of iterations depends upon the solver.)
Integrate derivatives to update continuous states.
EndIntegrate
EndMainLoop

}

main()
{
Initialization
Start/spawn task "tSingleRate".
Start clock that does a "semGive" on a clockSem semaphore.
Wait on "model-running" semaphore.
Shutdown

}

In this singletasking environment, the model is executed using real-time
operating system tasking primitives. In this environment, we create a single
task (tSingleRate) to run the model code. This task is invoked when a clock
tick occurs. The clock tick gives a clockSem (clock semaphore) to the model task
(tSingleRate). The model task will wait for the semaphore before executing.
The clock ticks are configured to occur at the fundamental step size (base rate)
for your model.

The pseudocode below is for a multitasking model using real-time tasking
primitives.

tSubRate(subTaskSem,1i)
{
Loop:
Wait on semaphore subTaskSem.
ModelOutputs(tid=1i)
ModelUpdate (tid=1i)
EndLoop
}

tBaseRate()
{

MainLoop:
If clockSem already "given", then error out due to overflow.

Wait on clockSem

7-10

Model Execution

For i=1:NumTasks
If (hit in task i)
If task i is currently executing, then error out due to

overflow.
Do a "semGive" on subTaskSem for task 1i.

EndIf
EndFor
ModelOutputs(tid=0) -- major time step.
LogTXY -- Log time, states and root outports.
ModelUpdate (tid=0) -- major time step.
Loop: -- Integration in minor time step for

-- models with continuous states.
ModelDeriviatives

Do O or more:
ModelOutputs(tid=0)
ModelDerivatives
EndDo (number of iterations depends upon the solver).
Integrate derivatives to update continuous states.
EndLoop
EndMainLoop

}

main()

{
Initialization
Start/spawn task "tSubRate".
Start/spawn task "tBaseRate".

Start clock that does a "semGive" on a clockSem semaphore.
Wait on "model-running" semaphore.
Shutdown

}

In this multitasking environment, the model is executed using real-time
operating system tasking primitives. In this environment, it is necessary to
create several model tasks (tBaseRate and several tSubRate tasks) to run the
model code. The base rate task (tBaseRate) has a higher priority than the
subrate tasks. The subrate task for tid=1 has a higher priority than the
subrate task for tid=2, and so on. The base rate task is invoked when a clock
tick occurs. The clock tick gives a clockSem to tBaseRate. The first thing

7-11

7 Program Architecture

7-12

tBaseRate does is give semaphores to the subtasks that have a hit at the
current point in time. Since the base rate task has a higher priority, it
continues to execute. Next it executes the fastest task (tid=0) consisting of
blocks in your model that have the fastest sample time. After this execution, it
resumes waiting for the clock semaphore. The clock ticks are configured to
occur at executing at the fundamental step size for your model.

Program Timing

Real-time programs require careful timing of the task invocations (either via

an interrupt or a real-time operating system tasking primitive) to ensure that
the model code executes to completion before another task invocation occurs.

This includes time to read and write data to and from external hardware.

The following diagram illustrates interrupt timing.

Sample interval is appropriate for this model code execution.

A A A

» time

——

Time to execute
— Time available to process background tasks

the model code

Sample interval is too short for this model code execution.

. @@ I » time

Time to execute the model ce)de

Figure 7-2: Task Timing

The sample interval must be long enough to allow model code execution
between task invocations.

Model Execution

In the figure above, the time between two adjacent vertical arrows is the
sample interval. The empty boxes in the upper diagram show an example of a
program that can complete one step within the interval and still allow time for
the background task. The gray box in the lower diagram indicates what
happens if the sample interval is too short. Another task invocation occurs
before the task is complete. Such timing results in an execution error.

Note also that, if Real-Time program is designed to run forever (i.e., the final
time is 0 or infinite so the while loop never exits), then the shutdown code never
executes.

Program Execution

As the previous section indicates, a real-time program may not require 100% of
the CPU’s time. This provides an opportunity to run background tasks during
the free time.

Background tasks include operations like writing data to a buffer or file,
allowing access to program data by third-party data monitoring tools, or using
Simulink external mode to update program parameters.

It is important, however, that the program be able to preempt the background
task at the appropriate time to ensure real-time execution of the model code.

The way the program manages tasks depends on capabilities of the
environment in which it operates.

External Mode Communication

External mode allows communication between the Simulink block diagram
and the stand-alone program that is built from the generated code. In this
mode, the real-time program functions as an interprocess communication
server, responding to requests from Simulink.

Data Lo?giniln Singletasking

and Multitasking Model Execution

The Real-Time Workshop data-logging features, described in “Workspace I/O
Options and Data Logging” on page 2-22, enable you to save system states,
outputs, and time to a MAT-file at the completion of the model execution. The
LogTXY function, which performs data logging, operates differently in
singletasking and multitasking environments.

7-13

7 Program Architecture

If you examine how LogTXY is called in the singletasking and multitasking
environments, you will notice that for singletasking LogTXY is called after
ModelOutputs. During this ModelOutputs call, all blocks that have a hit at time
t are executed, whereas in multitasking, LogTXY is called after
ModelOutputs(tid=0) that executes only the blocks that have a hit at time ¢
and that have a task identifier of 0. This results in differences in the logged
values between singletasking and multitasking logging. Specifically, consider
a model with two sample times, the faster sample time having a period of 1.0
second and the slower sample time having a period of 10.0 seconds. At time t =
k*10, k=0,1,2... both the fast (tid=0) and slow (tid=1) blocks have a hit. When
executing in multitasking mode, when LogTXY is called, the slow blocks will
have a hit, but the previous value will be logged, whereas in singletasking the
current value will be logged.

Another difference occurs when logging data in an enabled subsystem.
Consider an enabled subsystem that has a slow signal driving the enable port
and fast blocks within the enabled subsystem. In this case, the evaluation of
the enable signal occurs in a slow task and the fast blocks will see a delay of
one sample period, thus the logged values will show these differences.

To summarize differences in logged data between singletasking and
multitasking, differences will be seen when:

¢ Any root outport block has a sample time that is slower than the fastest
sample time

® Any block with states has a sample time that is slower than the fastest
sample time

® Any block in an enabled subsystem where the signal driving the enable port
is slower than the rate of the blocks in the enabled subsystem

For the first two cases, even though the logged values are different between
singletasking and multitasking, the model results are not different. The only
real difference is where (at what point in time) the logging is done. The third
(enabled subsystem) case results in a delay that can be seen in a real-time
environment.

Rapid Prototyping and Embedded
Model Execution Differences

The rapid prototyping program framework provides a common application
programming interface (API) that does not change between model definitions.

7-14

Model Execution

The Real-Time Workshop Embedded Coder provides a different framework
that we will refer to as the embedded program framework. The embedded
program framework provides a optimized API that is tailored to your model. It
is intended that when you use the embedded style of generated code, you are
modeling how you would like your code to execute in your embedded system.
Therefore, the definitions defined in your model should be specific to your
embedded targets. Items such as the model name, parameter, and signal
storage class are included as part of the API for the embedded style of code.

One major difference between the rapid prototyping and embedded style of
generated code is that the latter contains fewer entry-point functions. The
embedded style of code can be configured to have only one run-time function
model_ step. You can define a single run-time function because the embedded
target:

e Can only be used with models that do not have continuous sample time (and
therefore no continuous states)

¢ Requires that all S-functions must be inlined with the Target Language
Compiler, which means that they do not access the SimStruct data structure

Thus, when looking at the model execution pseudocode presented earlier in this
chapter, you can eliminate the Loop. . .EndLoop statements, and group the
ModelOutputs, LogTXY, and ModelUpdate into a single statement, model step.

For a detailed discussion of how generated embedded code executes, see the
Real-Time Workshop Embedded Coder documentation.

Rapid Prototyping Model Functions

The rapid prototyping code defines the following functions that interface with
the run-time interface:

¢ Model() — The model registration function. This function for initializes the
work areas (e.g., allocating and setting pointers to various data structures)
needed by the model. The model registration function calls the
MdlInitializeSizes and MdlInitializeSampleTimes functions. These two
functions are very similar to the S-function mdlInitializeSizes and
mdlInitializeSampleTimes methods.

® Md1lStart(void) — After the model registration functions,
MdlInitializeSizesandMdlInitializeSampleTimes execute, the run-time

7-15

7 Program Architecture

interface starts execution by calling Md1Start. This routine is called once at
startup.

The function Md1Start has four basic sections:

= Code to initialize the states for each block in the root model that has states.
A subroutine call is made to the “initialize states” routine of conditionally
executed subsystems.

= Code generated by the one-time initialization (start) function for each
block in the model.

= Code to enable the blocks in the root model that have enable methods, and
the blocks inside triggered or function-call subsystems residing in the root
model. Simulink blocks can have enable and disable methods. An enable
method is called just before a block starts executing, and the disable
method is called just after the block stops executing.

= Code for each block in the model that has a constant sample time.

® Md1Outputs(int T tid) — MdlOutputs updates the output of blocks at
appropriate times. The tid (task identifier) parameter identifies the task
that in turn maps when to execute blocks based upon their sample time. This
routine is invoked by the run-time interface during major and minor time
steps. The major time steps are when the run-time interface is taking an
actual time step (i.e., it is time to execute a specific task). If your model
contains continuous states, the minor time steps will be taken. The minor
time steps are when the solver is generating integration stages, which are
points between major outputs. These integration stages are used to compute
the derivatives used in advancing the continuous states.

® MdlUpdate(int T tid) — MdlUpdate updates the discrete states and work
vector state information (i.e., states that are neither continuous nor discrete)
saved in work vectors. The tid (task identifier) parameter identifies the task
that in turn indicates which sample times are active allowing you to
conditionally update states of only active blocks. This routine is invoked by
the run-time interface after the major Md10utputs has been executed.

® MdlDerivatives(void) — MdlDerivatives returns the block derivatives.
This routine is called in minor steps by the solver during its integration
stages. All blocks that have continuous states have an identical number of
derivatives. These blocks are required to compute the derivatives so that the
solvers can integrate the states.

7-16

Model Execution

® MdlTerminate(void) — Md1lTerminate contains any block shutdown code.
MdlTerminate is called by the run-time interface, as part of the termination
of the real-time program.

The contents of the above functions are directly related to the blocks in your
model. A Simulink block can be generalized to the following set of equations.

y = fO(t7 xc’ xd’ u)

Output, y, is a function of continuous state, x,, discrete state, x4, and input, u.
Each block writes its specific equation in the appropriate section of Md10utput.

xd+]_ = fu(taxd’ u)

The discrete states, x4, are a function of the current state and input. Each block
that has a discrete state updates its state in Md1Update.

x = fy(tx,u)

The derivatives, x, are a function of the current input. Each block that has
continuous states provides its derivatives to the solver (e.g., ode5) in
MdlDerivatives. The derivatives are used by the solver to integrate the
continuous state to produce the next value.

The output, y, is generally written to the block I/O structure. Root-level
Outport blocks write to the external outputs structure. The continuous and
discrete states are stored in the states structure. The input, u, can originate
from another block’s output, which is located in the block I/O structure, an
external input (located in the external inputs structure), or a state. These
structures are defined in the model .h file that Real-Time Workshop generates.

7-17

7 Program Architecture

The example below shows the general content of the rapid prototyping style of
C code written to the model . c file.

/*
* Version, Model options, TLC options,
* and code generation information are placed here.
*/
<includes>
void MdlStart(void)
{
/*
* State initialization code.
* Model start-up code - one time initialization code.
* Execute any block enable methods.
* Initialize output of any blocks with constant sample times.

*/
}
void MdlOutputs(int_T tid)
{
/* Compute: y = fO(t,xc,xd,u) for each block as needed. */
}
void MdlUpdate(int_T tid)
{
/* Compute: xd+1 = fu(t,xd,u) for each block as needed. */
}
void MdlDerivatives(void)
{
/* Compute: dxc = fd(t,xc,u) for each block as needed. */
}

void MdlTerminate(void)

/* Perform shutdown code for any blocks that
have a termination action */

7-18

Model Execution

Figure 7-3 shows a flow chart describing the execution of the rapid prototyping
generated code.

Start Execution

MdlStart

Md1Output

MdlUpdate

il

MdlDerivatives

Execution Loop

[Md1Output

Integration

MdlDerivatives

MdlTerminate

Figure 7-3: Rapid Prototyping Execution Flow Chart

Each block places code into specific Md1 routines according to the algorithm

that it is implementing. Blocks have input, output, parameters, and states, as
well as other general items. For example, in general, block inputs and outputs
are written to a block I/O structure (rtB). Block inputs can also come from the
external input structure (rtU) or the state structure when connected to a state
port of an integrator (rtX), or ground (rtGround) if unconnected or grounded.

7-19

7 Program Architecture

Block outputs can also go to the external output structure (rtY). The following
figure shows the general mapping between these items.

External External
Inputs . .---|Block IO < .~~~ % Outputs
p Lo Struct,
Struct, b ~tB : : Struct,
rtu Lo . | rty
--------- Bk [
! A . Work
! v 4 Structs,
: rtRWork,
: States Parameter| |rtIWork,
*---1 Struct, Struct, rtPWork,
rtX rtP

Figure 7-4: Data View of the Generated Code

Structure definitions:

® Block I/O Structure (rtB) — This structure consists of all block output
signals. The number of block output signals is the sum of the widths of the
data output ports of all nonvirtual blocks in your model. If you activate block
I/0 optimizations, Simulink and Real-Time Workshop reduce the size of the
rtB structure by:

= Reusing the entries in the rtB structure
= Making other entries local variables

See “Signal Storage, Optimization, and Interfacing” on page 5-17 for further
information on these optimizations.

Structure field names are determined by either the block’s output signal
name (when present) or by the block name and port number when the output
signal is left unlabeled.

® Block States Structures — The continuous states structure (rtX) contains
the continuous state information for any blocks in your model that have

7-20

Model Execution

continuous states. Discrete states are stored in a data structure called the
DWork vector (rtbWork).

¢ Block Parameters Structure (rtP) — The parameters structure contains all
block parameters that can be changed during execution (e.g., the parameter
of a Gain block).

¢ External Inputs Structure (rtU) —The external inputs structure consists of
all root-level Inport block signals. Field names are determined by either the
block’s output signal name, when present, or by the Inport block’s name
when the output signal is left unlabeled.

¢ External Outputs Structure (rtY) —The external outputs structure consists
of all root-level Outport blocks. Field names are determined by the root-level
Outport block names in your model.

® Real Work, Integer Work, and Pointer Work Structures (rtRWork, rtIWork,
rtPWork) — Blocks may have a need for real, integer, or pointer work areas.
For example, the Memory block uses a real work element for each signal.
These areas are used to save internal states or similar information.

Embedded Model Functions

The Real-Time Workshop Embedded Coder Coder target generates the
following functions:

® model_intialize — Performs all model initialization and should be called
once before you start executing your model.

¢ If the Single output/update function code generation option is selected,
then you will see:
= model step(int_T tid) — Contains the output and update code for all
blocks in your model.
Otherwise you will see:
= model output(int T tid) — Contains the output code for all blocks in
your model.

= model update(int_T tid) — This contains the update code for all blocks
in your model.

¢ [fthe Terminate function required code generation option is selected, then

you will see:

7-21

7 Program Architecture

= model_ terminate — This contains all model shutdown code and should be
called as part of system shutdown.

See the Real-Time Workshop Embedded Coder documentation for complete
descriptions of these functions in the context of the Real-Time Workshop
Embedded Coder.

7-22

Rapid Prototyping Program Framework

Rapid Prototyping Program Framework

The code modules generated from a a Simulink model —model . c,model .h, and
other files — implement the model’s system equations, contain block
parameters, and perform initialization.

The Real-Time Workshop program framework provides the additional source
code necessary to build the model code into a complete, stand-alone program.
The program framework consists of application modules (files containing
source code to implement required functions) designed for a number of
different programming environments.

The automatic program builder ensures the program is created with the proper
modules once you have configured your template makefile. The application
modules and the code generated for a Simulink model are implemented using
a common API. This API defines a data structure (called a real-time model,
sometimes abbreviated as r¢M) that encapsulates all data for your model.

This API is similar to that of S-functions, with one major exception: the API
assumes that there is only one instance of the model, whereas S-functions can
have multiple instances. The function prototypes also differ from S-functions.

7-23

7 Program Architecture

Rapid Prototyping Program Architecture

The structure of a real-time program consists of three components. Each
component has a dependency on a different part of the environment in which
the program executes. The following diagram illustrates this structure.

Rapid Prototyping Real-Time Program Architecture
r-—-— - -, ------- - = - - - - - - - -_ - - A
| - I
| g Main Program External mode |
ystem- Timing communication
I Dependent Interrupt handling I
I Components I/0O drivers I
[Data logging |
I I
| I
I I
! System- Integration solvers: odel.c ode5.c !
I Independent Model execution scheduler: rt_sim.c I
I Components I
| |
| |
| |
| Run-Time Interface I
L — o o o 4
Generated (Model) Code
Application 1I\/I{d l(l)LJt‘Fput lf/i eo‘{ci Lt st Nomnhped
Components effl -time Mo (? ata str. S-functions
Inlined S-functions mysfun.c
Model parameters

Figure 7-5: The Rapid Prototyping Program Architecture

7-24

Rapid Prototyping Program Framework

The Real-Time Workshop architecture consists of three parts. The first two
components, system dependent and independent, together form the run-time
interface.

This architecture readily adapts to a wide variety of environments by isolating
the dependencies of each program component. The following sections discuss
each component in more detail and include descriptions of the application
modules that implement the functions carried out by the system dependent,
system independent, and application components.

Rapid Prototyping System-Dependent Components

These components contain the program’s main function, which controls
program timing, creates tasks, installs interrupt handlers, enables data
logging, and performs error checking.

The way in which application modules implement these operations depends on
the type of computer. This means that, for example, the components used for a
DOS-based program perform the same operations, but differ in method of
implementation from components designed to run under Tornado on a VME
target.

The main Function

The main function in a C program is the point where execution begins. In
Real-Time Workshop application programs, the main function must perform
certain operations. These operations can be grouped into three categories:
initialization, model execution, and program termination.

Initialization

¢ Initialize special numeric parameters: rtInf, rtMinusInf, and rtNaN. These
are variables that the model code can use.

¢ Call the model registration function to get a pointer to the real-time model.
The model registration function has the same name as your model. It is
responsible for initializing real-time model fields and any S-functions in your
model.

¢ Initialize the model size information in the real-time model. This is done by
calling Md1InitializeSizes.

¢ Initialize a vector of sample times and offsets (for systems with multiple
sample rates). This is done by calling Md1InitializeSampleTimes.

7-25

7 Program Architecture

® Get the model ready for execution by calling Md1Start, which initializes
states and similar items.

® Set up the timer to control execution of the model.

¢ Define background tasks and enable data logging, if selected.

Model Execution

¢ Execute a background task, for example, communicate with the host during
external mode simulation or introduce a wait state until the next sample
interval.

¢ Execute model (initiated by interrupt).
¢ Log data to buffer (if data logging is used).

® Return from interrupt.

Program Termination

® Call a function to terminate the program if it is designed to run for a finite
time — destroy the real-time model data structure, deallocate memory, and
write data to a file.

Rapid Prototyping Application Modules

for System-Dependent Components

The application modules contained in the system dependent components
generally include a main module such as rt_main.c containing the main entry
point for C. There may also be additional application modules for such things
as I/0 support and timer handling.

Rapid Prototyping System-Independent
Components

These components are collectively called system independent because all
environments use the same application modules to implement these
operations. This section steps through the model code (and if the model has
continuous states, calls one of the numerical integration routines). This section
also includes the code that defines, creates, and destroys the real-time model
data structure (rtM). The model code and all S-functions included in the
program define their own SimStruct.

7-26

Rapid Prototyping Program Framework

The model code execution driver calls the functions in the model code to
compute the model outputs, update the discrete states, integrate the
continuous states (if applicable), and update time. These functions then write
their calculated data to the real-time model.

Model Execution

At each sample interval, the main program passes control to the model
execution function, which executes one step though the model. This step reads
inputs from the external hardware, calculates the model outputs, writes

outputs to the external hardware, and then updates the states.

The following diagram illustrates these steps.

Execute Model

Figure 7-6: Executing the Model

Read system inputs
from A/D

!

Calculate system outputs

\

Write system outputs
to D/A

\d

Calculate and update
discrete states

\i

Calculate and update
continuous states

- Integration

A

Increment time

Algorithm

7-27

7 Program Architecture

Note that this scheme writes the system outputs to the hardware before the
states are updated. Separating the state update from the output calculation
minimizes the time between the input and output operations.

Integration of Continuous States

The real-time program calculates the next values for the continuous states
based on the derivative vector, dx/dt, for the current values of the inputs and
the state vector.

These derivatives are then used to calculate the next value of the states using
a state-update equation. This is the state-update equation for the first order
Euler method (ode1)

dx
= + —
x =x dth
where h is the step size of the simulation, x represents the state vector, and
dx/dt is the vector of derivatives. Other algorithms may make several calls to
the output and derivative routines to produce more accurate estimates.

Note, however, that real-time programs use a fixed-step size since it is
necessary to guarantee the completion of all tasks within a given amount of
time. This means that, while you should use higher order integration methods
for models with widely varying dynamics, the higher order methods require
additional computation time. In turn, the additional computation time may
force you to use a larger step size, which can diminish the accuracy increase
initially sought from the higher order integration method.

Generally, the stiffer the equations, (i.e., the more dynamics in the system with
widely varying time constants), the higher the order of the method that you
must use.

In practice, the simulation of very stiff equations is impractical for real-time
purposes except at very low sample rates. You should test fixed-step size
integration in Simulink to check stability and accuracy before implementing
the model for use in real-time programs.

For linear systems, it is more practical to convert the model that you are
simulating to a discrete time version, for instance, using the c2d function in the
Control System Toolbox.

7-28

Rapid Prototyping Program Framework

Application Modules for System-Independent Components
The system independent components include these modules:

® odel.c, ode2.c, ode3.c, ode4.c, ode5.c — These modules implement the
integration algorithms supported for real-time applications. See the
Simulink documentation for more information about these fixed-step
solvers.

® rt_sim.c — Performs the activities necessary for one time step of the model.
It calls the model function to calculate system outputs and then updates the
discrete and continuous states.

® simstruc_types.h — Contains definitions of various events, including
subsystem enable/disable and zero crossings. It also defines data logging
variables.

The system independent components also include code that defines, creates,
and destroys the real-time model data structure. All S-functions included in
the program define their own SimStruct.

The SimStruct data structure encapsulates all the data relating to
anS-function, including block parameters and outputs. See Writing
S-Functions for more information about the SimStruct.

Rapid Prototyping Application Components

The application components contain the generated code for the Simulink
model, including the code for any S-functions in the model. This code is referred
to as the model code because these functions implement the Simulink model.

However, the generated code contains more than just functions to execute the
model (as described in the previous section). There are also functions to
perform initialization, facilitate data access, and complete tasks before
program termination. To perform these operations, the generated code must
define functions that:

® Create the real-time model.

e Initialize model size information in the real-time model.

¢ Initialize a vector of sample times and sample time offsets and store this
vector in the real-time model.

® Store the values of the block initial conditions and program parameters in
the real-time model.

7-29

7 Program Architecture

® Compute the block and system outputs.
¢ Update the discrete state vector.
® Compute derivatives for continuous models.

® Perform an orderly termination at the end of the program (when the current
time equals the final time, if a final time is specified).

® Collect block and scope data for data logging (either with Real-Time
Workshop or third-party tools).

The Real-Time Model Data Structure

The real-time model data structure encapsulates model data and associated
information necessary to fully describe the model. Its contents include:

® Model parameters, inputs, and outputs
® Storage areas, such as dWork

® Timing information

® Solver identification

® Data logging information

¢ Simstructs for all child S-functions

e External mode information

The real-time model data structure is used for all targets. In previous releases,
the ERT target used the rtObject data structure, and other targets used the
simstruct data structure for encapsulating model data. Now all targets are
treated the same, except for the fact that the real-time model data structure is
pruned for ERT targets to save space in executables. Even when not pruned,
the real-time model data structure is more space-efficient than the root
simstruct used by earlier releases for non-ERT targets, as it only contains
fields for child (S-function) simstructs that are actually used in a model.

Rapid Prototyping Model Code Functions

The functions defined by the model code are called at various stages of program
execution (i.e., initialization, model execution, or program termination).

7-30

Rapid Prototyping Program Framework

The following diagram illustrates the functions defined in the generated code
and shows what part of the program executes each function.

Model Code

Main Program Initialization

I Model registration function — model |

| Initialize sizes in the rtM — MdlInitializeSizes |

I Initialize sample times and offsets — MdlInitializeSampleTimes |

I Start model (initialize conditions, etc.) — Md1Start |

Model Execution

I Compute block and system outputs — Md1Outputs I

| Update discrete state vector —Md1lUpdate |

| Compute derivatives for continuous models —Md1Derivatives |

Main Program Termination

I Orderly termination at end of the program — Md1Terminate |

Figure 7-7: Execution of the Model Code

The Model Registration Function

The model registration function has the same name as the Simulink model
from which it is generated. It is called directly by the main program during
initialization. Its purpose is to initialize and return a pointer to the real-time
model data structure.

Models Containing S-Functions

A noninlined S-function is any C MEX S-function that is not implemented
using a customized TLC file. If you create a C MEX S-function as part of a
Simulink model, it is by default noninlined unless you write your own TLC file

7-31

7 Program Architecture

that inlines it within the body of the model.c code. Real-Time Workshop
automatically incorporates your non-inlined C code S-functions into the
program if they adhere to the S-function API described in the Simulink
documentation.

This format defines functions and a SimStruct that are local to the S-function.
This allows you to have multiple instances of the S-function in the model. The
model’s real-time model data structure contains a pointer to each S-function’s
SimStruct.

Code Generation and S-Functions

If a model contains S-functions, the source code for the S-function must be on
the search path the make utility uses to find other source files. The directories
that are searched are specified in the template makefile that is used to build
the program.

S-functions are implemented in a way that is directly analogous to the model
code. They contain their own public registration function (which is called by the
top-level model code) that initializes static function pointers in its SimStruct.
When the top-level model needs to execute the S-function, it does so via the
function pointers in the S-function’s SimStruct. There can be more than one
S-function with the same name in your model. This is accomplished by having
function pointers to static functions.

Inlining S-Functions

You can incorporate C MEX S-functions, along with the generated code, into
the program executable. You can also write a target file for your C MEX
S-function to inline the S-function, thus improving performance by eliminating
function calls to the S-function itself. For more information on inlining
S-functions, see the Target Language Compiler Reference Guide.

7-32

Rapid Prototyping Program Framework

Application Modules for Application Components
When Real-Time Workshop generates code, it produces the following files:

*model.c — The C code generated from the Simulink block diagram. This code
implements the block diagram’s system equations as well as performing
initialization and updating outputs.

® model data.c — An optional file containing data for parameters and
constant block i/0, which are also declared as extern in model.h. Only
generated when rtP and rtC structures are populated.

® model.h — Header file containing the block diagram’s simulation
parameters, I/O structures, work structures, and other declarations. It
includes model private.h.

® model private.h — Header file containing declarations of exported signals
and parameters.

These files are named for the Simulink model from which they are generated.

In addition, a dummy include file always named rtmodel. h is generated, which
includes the above model-specific data structures and entry points. This
enables the (static) target-specific main programs to reference files generated
by Real-Time Workshop without needing to know the names of the models
involved.

If you have created custom blocks using C MEX S-functions, you need the
source code for these S-functions available during the build process.

7-33

7 Program Architecture

Embedded Program Framework

The Real-Time Workshop Embedded Coder provides a framework for
embedded programs. Its architecture is outlined by the following figure.

Embedded Program Architecture

R e) —
I Main Program I
! System Timing I
I Dependent Interrupt handling |
| Components I/O drivers |
| Data logging [
I |
I |
I I
| System Integration solvers: ode1.c ode5.c |
| Independent Model execution scheduler: rt_sim.c |
| Components |
I I
I |
I I
I I

Run-time Interface

. . Generated (Model) Code
Application Md1lOutputs, etc.

Components | [n)ined S-functions
Model parameters

Figure 7-8: Embedded Program Architecture

7-34

Embedded Program Framework

Note the similarity between this architecture and the rapid prototyping
architecture in Figure 7-5. The main difference is the lack of the SimStruct
data structure and the removal of the noninlined S-functions.

Using this figure, you can compare the embedded style of generated code, used
in the Real-Time Workshop Embedded Coder, with the rapid prototyping style
of generated code of the previous section. Most of the rapid prototyping
explanations in the previous section hold for the Real-Time Workshop
Embedded Coder target. The Real-Time Workshop Embedded Coder target
simplifies the process of using the generated code in your custom-embedded
applications by providing a model- specific API and eliminating the SimStruct.
This target contains the same conceptual layering as the rapid prototyping
target, but each layer has been simplified.

For a discussion of the structure of embedded real-time code, see the Real-Time
Workshop Embedded Coder documentation.

7-35

7 Program Architecture

7-36

Models with Multiple
Sample Rates

This section discusses how and why real-time execution of code generated from models having
multiple sample rates differs from the simulation behavior of the models. Solutions to problems
arising from multirate model execution are also described. The topics covered are:

Introduction (p. 8-2) Describes types of sample times and issues to consider
regarding execution of multirate models

Singletasking vs. Multitasking Discusses how Real-Time Workshop handles execution of
Environments (p. 8-3) multirate systems, in both multitasking and
pseudo-multitasking environments

Sample Rate Transitions (p. 8-12) Shows how to handle transitions between blocks with
unequal sample rates using Rate Transition blocks

Singletasking and Multitasking Discusses how an example model executes in both
Execution of a Model: an Example singletasking and multitasking solver modes, with timing
(p. 8-22) diagrams

8 Models with Multiple Sample Rates

8-2

Introduction

A Simulink block can be classified, according to its sample time, as constant,
continuous-time, discrete-time, inherited, or variable. Examples of each type
include:

® Constant — Constant block, Width

¢ Continuous-time — Integrator, Derivative, Transfer Function
® Discrete-time — Unit Delay, Digital Filter

¢ Inherited — Gain, Sum, Lookup Table

® Variable — These are blocks that set their time of next hit based upon
current information. These blocks work only with variable step solvers.
Examples of variable sample time blocks include the Pulse Generator and
some S-Function blocks.

Blocks in the inherited category assume the sample time of the blocks that are
driving them. Continuous blocks have a nominal sample time of zero. Every
Simulink block therefore has a sample time, whether it is explicit, as in the
case of continuous or discrete blocks, or implicit, as in the case of inherited
blocks.

Simulink allows you to create models without any restrictions on connections
between blocks with different sample times. It is therefore possible to have
blocks with differing sample times in a model (a mixed-rate system). A possible
advantage of employing multiple sample times is improved efficiency when
executing in a multitasking real-time environment.

Simulink provides considerable flexibility in building these mixed-rate
systems. However, the same flexibility also allows you to construct models for
which the code generator cannot generate correct real-time code for execution
in a multitasking environment. To make these models operate correctly in real
time (i.e., to give the right answers), you must modify your model. In general,
the modifications involve placing Rate Transition blocks between blocks that
have unequal sample rates. The sections that follow discuss the issues you
must address to use a mixed-rate model successfully in a multitasking
environment.

Singletasking vs. Multitasking Environments

Singletasking vs. Multitasking Environments

There are two execution modes for a fixed-step Simulink model: singletasking
and multitasking. You use the Mode pull-down menu on the Solver page of the
Simulation Parameters dialog box to specify how to execute your model. Auto
mode (the default) selects multitasking execution for a mixed-rate model, and
otherwise selects singletasking execution. You can also select SingleTasking
or MultiTasking execution explicitly.

Execution of models in a real-time system can be done with the aid of a
real-time operating system, or it can be done on a bare-board target, where the
model runs in the context of an interrupt service routine (ISR).

Note that the fact that a system (such as UNIX or Microsoft Windows) is
multitasking does not guarantee that the program can execute in real time.
This is because it is not guaranteed that the program can preempt other
processes when required.

In DOS, where only one process can exist at any given time, an interrupt
service routine (ISR) must perform the steps of saving the processor context,
executing the model code, collecting data, and restoring the processor context.

Tornado, on the other hand, provides automatic context switching and task
scheduling. This simplifies the operations performed by the ISR. In this case,
the ISR simply enables the model execution task, which is normally blocked.

8-3

8 Models with Multiple Sample Rates

Figure 8-1 illustrates this difference.

Real-Time Clock

Interrupt Service

Hardware Routine

Interrupt

Save Context))
Program execution using an

+ interrupt service routine (bare-
board, with no real-time operating

Execute Model system). See the grt target for an

+ example.
Collect Data
Restore Context
Real-Time Clock
Interrupt Service Context Model Execution
Hardware Routine Switch Task

Interrupt

semGive ; semTake

Execute Model

Program execution using a real-time v
operating system primitive. See the Collect Data
Tornado target for an example.

Figure 8-1: Real-Time Program Execution

8-4

Singletasking vs. Multitasking Environments

This chapter focuses on when and how the run-time interface executes your
model. See “Program Execution” on page 7-13 for a description of what happens
during model execution.

Executing Multitasking Models

In cases where the continuous part of a model executes at a rate that is
different from the discrete part, or a model has blocks with different sample
rates, the code assigns each block a task identifier (tid) to associate the block
with the task that executes at the block’s sample rate.

Certain restrictions apply to the sample rates that you can use:

® The sample rate of any block must be an integer multiple of the base (i.e., the
fastest) sample period. The base sample period is determined by the Fixed
step size specified on the Solver page of the Simulation parameters dialog
box (if a model has continuous blocks) or by the fastest sample time specified
in the model (if the model is purely discrete). Continuous blocks always
execute via an integration algorithm that runs at the base sample rate.

® The continuous and discrete parts of the model can execute at different rates
only if the discrete part is executed at the same or a slower rate than the
continuous part (and is an integer multiple of the base sample rate).

Multitasking and Pseudomultitasking

In a multitasking environment, the blocks with the fastest sample rates are
executed by the task with the highest priority, the next slowest blocks are
executed by a task with the next lower priority, and so on. Time available in
between the processing of high priority tasks is used for processing lower
priority tasks. This results in efficient program execution.

See “Multitasking System Execution” on page 8-7 for a graphical
representation of task timing.

In multitasking environments (i.e., a real-time operating system), you can
define separate tasks and assign them priorities. In a bare-board target (i.e.,
no real-time operating system present), you cannot create separate tasks.
However, Real-Time Workshop application modules implement what is
effectively a multitasking execution scheme using overlapped interrupts,
accompanied by manual context switching.

8-5

8 Models with Multiple Sample Rates

8-6

This means an interrupt can occur while another interrupt is currently in
progress. When this happens, the current interrupt is preempted, the
floating-point unit (FPU) context is saved, and the higher priority interrupt
executes its higher priority (i.e., faster sample rate) code. Once complete,
control is returned to the preempted ISR.

The following diagrams illustrate how mixed-rate systems are handled by
Real-Time Workshop in these two environments.

Singletasking vs. Multitasking Environments

Lowest Priority ! —&\\\\\\\\\\\\\\\\\\\\\\\\\\% W A rate 3

Dotted lines with downward pointing
arrows indicate the release of control

to a lower priority task

Dark gray areas indicate task execution.

&\\\\% e s S agate tast preemption by a

Dotted lines with upward pointing
arrows indicate preemption by a Light gray areas indicate task execution
is pending.

higher priority task.

Figure 8-2: Multitasking System Execution
Figure 8-3 illustrates how overlapped interrupts are used to implement

pseudomultitasking. Note that in this case, Interrupt O does not return until
after Interrupts 1, 2, and 3.

8-7

8 Models with Multiple Sample Rates

S R Y
vty | ZX\R\\\\\\EEERR\\\\\X\\\\X\\\\EER\\\R\\\\X\\\R\\X\\%/T

Figure 8-3: Pseudomultitasking Using Overlapped Interrupts

Building the Program for Multitasking Execution

To use multitasking execution, select Auto (the default) or MultiTasking as the
mode on the Solver page of the Simulation Parameters dialog box. The Mode
menu is only active if you have selected Fixed-step as the Solver options type.
Auto solver mode will result in a multitasking environment if your model has
two or more different sample times. In particular, a model with a continuous
and a discrete sample time will run in singletasking mode if the fixed-step size
is equal to the discrete sample time.

Singletasking

It is possible to execute the model code in a strictly singletasking manner.
While this method is less efficient with regard to execution speed, in certain
situations it may allow you to simplify your model.

Singletasking vs. Multitasking Environments

In a singletasking environment, the base sample rate must define a time
interval that is long enough to allow the execution of all blocks within that
interval.

The following diagram illustrates the inefficiency inherent in singletasking
execution.

t1 t2 t3 t4

Figure 8-4: Singletasking System Execution

Singletasking system execution requires a sample interval that is long enough
to execute one step through the entire model.

Building the Program for Singletasking Execution

To use singletasking execution, select the singletasking mode on the Solver
page of the Simulation Parameters dialog box. If the solver mode is Auto,
singletasking is used in the following cases:

¢ If your model contains one sample time

¢ If your model contains a continuous and a discrete sample time and the fixed
step size is equal to the discrete sample time

Model Execution

To generate code that executes correctly in real time, you may need to modify
sample rate transitions within the model before generating code. To
understand this process, first consider how Simulink simulations differ from
real-time programs.

Simulating Models with Simulink

Before Simulink simulates a model, it orders all of the blocks based upon their
topological dependencies. This includes expanding subsystems into the
individual blocks they contain and flattening the entire model into a single list.
Once this step is complete, each block is executed in order.

8-9

8 Models with Multiple Sample Rates

8-10

The key to this process is the proper ordering of blocks. Any block whose output
is directly dependent on its input (i.e., any block with direct feedthrough)
cannot execute until the block driving its input has executed.

Some blocks set their outputs based on values acquired in a previous time step
or from initial conditions specified as a block parameter. The output of such a
block is determined by a value stored in memory, which can be updated
independently of its input. During simulation, all necessary computations are
performed prior to advancing the variable corresponding to time. In essence,
this results in all computations occurring instantaneously (i.e., no
computational delay).

Executing Models in Real Time

A real-time program differs from a Simulink simulation in that the program
must execute the model code synchronously with real time. Every calculation
results in some computational delay. This means the sample intervals cannot
be shortened or lengthened (as they can be in Simulink), which leads to less
efficient execution.

t0 t1 t2

A

Time >
Figure 8-5: Unused Time in Sample Interval

Sample interval t1 cannot be compressed to increase execution speed because
by definition, sample times are clocked in real time.

Real-Time Workshop application programs are designed to circumvent this
potential inefficiency by using a multitasking scheme. This technique defines
tasks with different priorities to execute parts of the model code that have
different sample rates.

See “Multitasking and Pseudomultitasking” on page 8-5 for a description of
how this works. It is important to understand that section before proceeding
here.

Singletasking vs. Multitasking Environments

Singletasking vs. Multitasking Operation

Singletasking programs require longer sample intervals, because all
computations must be executed within each clock period. This can result in
inefficient use of available CPU time, as shown in Figure 8-5.

The use of multitasking can improve the efficiency of your program if the model
is large and has many blocks executing at each rate.

However, if your model is dominated by a single rate, and only a few blocks
execute at a slower rate, multitasking can actually degrade performance. In
such a model, the overhead incurred in task switching can be greater than the
time required to execute the slower blocks. In this case, it is more efficient to
execute all blocks at the dominant rate.

If you have a model that can benefit from multitasking execution, you may
need to modify your Simulink model by adding Rate Transition blocks to
generate correct results. The next section, “Sample Rate Transitions” on
page 8-12, discusses issues related to rate transition blocks.

8-11

8 Models with Multiple Sample Rates

Sample Rate Transitions

There are two possible sample rate transitions that can exist within a model:

¢ A faster block driving a slower block
® A slower block driving a faster block

In singletasking systems, there are no issues involving multiple sample rates.
In multitasking and pseudomultitasking systems, however, differing sample
rates can cause problems. To prevent possible errors in calculated data, you
must control model execution at these transitions. In transitioning from faster
to slower blocks, you must add Rate Transition blocks between the faster and
slower blocks.

This diagram

—»
—» T=1sec P T=2sec
—»
Faster Slower
Block Block
becomes
—»
::T:lsec ——» | T =2sec |—P»| T =2sec
Faster Rate Slower
Block Transition Block

Figure 8-6: Transitioning from Faster to Slower Blocks (T = sample period)

8-12

Sample Rate Transitions

In transitioning from slower to faster blocks, you must add Rate Transition
blocks between the slower and faster blocks.

This diagram

—»)

P T=2gec|—» T=1-sec

—>
Slower Faster
Block Block

becomes

—p

::T=2sec ——» T =2sec|—P»T=1sec
Slower Rate Faster
Block Transition Block

Figure 8-7: Transitioning from Slower to Faster Blocks (T = Sample Period)

Data Transfer Problems

Rate Transition blocks are designed to deal with the following problems that
occur in data transfer between blocks running at different rates:

® Data integrity: A problem of data integrity exists when the input to a block
changes during the execution of that block. Data integrity problems can be
caused by preemption.

Consider the following scenario: a faster block supplies the input to a slower
block. The slower block reads an input value V; from the faster block and

begins computations using that value. These computations are preempted by
another execution of the faster block, which computes a new output value V.

8-13

8 Models with Multiple Sample Rates

8-14

A data integrity problem now arises: when the slower block resumes
execution, it continues its computations, now using the “new” input value V5.

We will refer to such a data transfer as unprotected. Figure 8-8 illustrates an
unprotected data transfer.

In a protected data transfer, the output V; of the faster block would be held
until the slower block finished executing.

® Deterministic vs. non-deterministic data transfer: In a deterministic data
transfer, the timing of the data transfer is completely predictable, as
determined by the sample rates of the blocks.

The timing of a non-deterministic data transfer depends on the availability
of data, the sample rates of the blocks, and the time at which the receiving
block begins to execute relative to the driving block.

You can use the Rate Transition block to ensure that data transfers in your
application are both protected and deterministic. These characteristics are
considered desirable in most applications. However, the Rate Transition block
supports flexible options that allow you to compromise data integrity and
determinism in favor of lower latency. The next section summarizes these
options.

Rate Transition Block Options

Several parameters of the Rate Transition block are relevant to its use in code
generation for real-time execution. These are discussed below. For full
documentation of the Rate Transition block and its block parameters, see the
“Simulink Blocks” section of Using Simulink.

The Rate Transition block handles both types of transitions (fast to slow, and
slow to fast). When inserted between two blocks of differing sample rates, the
Rate Transition block detects the two rates and automatically configures its
input and output sample rates for the appropriate type of transition.

The most critical decision you must make in configuring a Rate Transition
block is the choice of data transfer mechanism to be used between the two
rates. Your choice will be dictated by considerations of safety, memory usage,
and performance. The data transfer mechanism is controlled by two options:

¢ Ensure data integrity during data transfer: When this option is on, the
integrity of data transferred between rates is guaranteed (the data transfer
is protected). When this option is off, data integrity is not guaranteed (the

Sample Rate Transitions

data transfer is unprotected). By default, Ensure data integrity during
data transfer is on.

¢ Ensure deterministic data transfer (maximum delay): This option is
enabled only for protected data transfer (when Ensure data integrity
during data transfer is on). When this option is on, the Rate Transition
block behaves like a Zero-Order Hold block (for fast to slow transitions) or a
Unit Delay block (for slow to fast transitions). The Rate Transition block
controls the timing of data transfer in a completely predictable way. When
this option is off, the data transfer is non-deterministic. By default, Ensure
deterministic data transfer (maximum delay) is on.

Thus the Rate Transition block offers three modes of operation with respect to
data transfer. In order safety, from safest to least safe, these are:

¢ Protected/Deterministic (default): This is the safest mode. The drawback
of this mode is that it introduces latency into the system:

= Fast to slow transition: maximum latency is 1 sample period of the slower
task.

= Slow to fast transition: maximum latency is 2 sample periods of the slower
task.

¢ Protected/Non-Deterministic: In this mode, data integrity is protected by
double-buffering data transferred between rates. The blocks downstream
from the Rate Transition block always use the latest available data from the
block that drives the Rate Transition block. Maximum latency is less than or
equal to 1 sample period of the faster task.

The drawbacks of this mode are its non-deterministic timing and its use of
extra memory buffers. The advantage of this mode is its low latency.

¢ Unprotected/Non-Deterministic: This mode is the least safe, and is not
recommended for mission-critical applications. The latency of this mode is
the same as for Protected/Non-Deterministic mode, but memory
requirements are reduced since there is no double-buffering.

Note In unprotected mode (Ensure data integrity during data transfer
option off), the Rate Transition block does nothing other than allow the rate
transition to exist in the model.

8-15

8 Models with Multiple Sample Rates

8-16

The next four sections describe cases in which Rate Transition blocks are
necessary for sample rate transitions. The discussion and timing diagrams in
these sections are based on the assumption that the Rate Transition block is
used in its default (Protected/Deterministic) mode, with the Ensure data
integrity during data transfer and Ensure deterministic data transfer
(maximum delay) options on.

Faster to Slower Transitions in Simulink

In a model where a faster block drives a slower block having direct
feedthrough, the outputs of the faster block are always computed first. In
simulation intervals where the slower block does not execute, the simulation
progresses more rapidly because there are fewer blocks to execute.

The following diagram illustrates this situation.

t0 tl t2 t3
< _ A A
::T—lsec—bT—2sec
Faster Slower T=1s T=2s T=1s | T=1s T=2s T=1s
Block Block

Time >

Simulink does not execute in real time, which means that it is not bound by

real-time constraints. Simulink waits for, or moves ahead to, whatever tasks
are necessary to complete simulation flow. The actual time interval between
sample time steps can vary.

Faster to Slower Transitions in Real Time

In models where a faster block drives a slower block, you must compensate for
the fact that execution of the slower block may span more than one execution
period of the faster block. This means that the outputs of the faster block may
change before the slower block has finished computing its outputs. The
following diagram illustrates a situation where this problem arises. The

Sample Rate Transitions

hashed area indicates times when tasks are preempted by higher priority
before completion.

A A

T =1 sec T = 2 sec

P S A

S e)) A ()
Tas T-1s/| @ T=1s| @) |T=1s/] @)|T-1s/[B

Time
@ The faster task (T=1s) completes.

Yoy

@ Higher priority preemption occurs.

(3 The slower task (T=2s) resumes and its inputs
have changed. This leads to unpredictable results.

Figure 8-8: Time Overlaps in Faster to Slower Transitions (T = Sample Time)

In Figure 8-8, the faster block executes a second time before the slower block
has completed execution. This can cause unpredictable results because the
input data to the slow task is changing. Data integrity is not guaranteed in this
situation.

To avoid this situation, you must hold the outputs of the 1 second (faster) block
until the 2 second (slower) block finishes executing. The way to accomplish this
is by inserting a Rate Transition block between the 1 second and 2 second
blocks. This guarantees that the input to the slower block does not change
during its execution, ensuring data integrity..

—»

::T:lsec ——» | T =2sec|—P T =2sec
Faster Rate Slower
Block Transition Block

We assume that the Rate Transition block is used in its default
(Protected/Deterministic) mode.

8-17

8 Models with Multiple Sample Rates

The Rate Transition block executes at the sample rate of the slower block, but
with the priority of the faster block.

2 Sec
Task

1 Sec
Task

t0 t2

T=2s T

t0 tl t2

A A A
T=1s | RT T=1s T=1s | RT

T=1s

Time —»

This ensures that the Rate Transition block executes before the 1 second block
(its priority is higher) and that its output value is held constant while the 2
second block executes (it executes at the slower sample rate).

Slower to Faster Transitions in Simulink

In a model where a slower block drives a faster block, Simulink again computes
the output of the driving block first. During sample intervals where only the
faster block executes, the simulation progresses more rapidly.

The following diagram illustrates the execution sequence.

_’

::T=2sec_’T=1sec
Slower Faster
Block Block

t0 tl t2 t3
T=2s |T=1s|T=1s| T=2s |[T=1s|T=1s
Time >

As you can see from the preceding diagrams, Simulink can simulate models
with multiple sample rates in an efficient manner. However, Simulink does not
operate in real time.

8-18

Sample Rate Transitions

Slower to Faster Transitions in Real Time

In models where a slower block drives a faster block, the generated code
assigns the faster block a higher priority than the slower block. This means the
faster block is executed before the slower block, which requires special care to
avoid incorrect results.

2 Sec
Task
_’
::T=2sec T=1sec
Faster
Block Block

1 Sec

Task

Time >

@ The faster block executes a second time prior to the completion
of the slower block.

@ The faster block executes before the slower block.

Figure 8-9: Time Overlaps in Slower to Faster Transitions

This timing diagram illustrates two problems:

® Execution of the slower block is split over more than one faster block
interval. In this case the faster task executes a second time before the slower
task has completed execution. This means the inputs to the slower task can
change.

¢ The faster block executes before the slower block (which is backwards from
the way Simulink operates). In this case, the 1 second block executes first;
but the inputs to the faster task have not been computed. This can cause
unpredictable results.

8-19

8 Models with Multiple Sample Rates

8-20

2 Sec
Task = update

1 Sec RT

Task

To eliminate these problems, you must insert a Rate Transition block between
the slower and faster blocks..

—»]

::T=2sec ——» T =2sec P T=1sec
Slower Rate Faster
Block Transition Block

We assume that the Rate Transition block is used in its default
(Protected/Deterministic) mode.

The picture below shows the timing sequence that results with the added Rate
Transition block.

RT

output T=1s T=1s @ output T=1s T=1s

Time

Three key points about this diagram:

® The Rate Transition block output runs in the 1 second task, but only at its
rate (2 seconds). The output of the Rate Transition block feeds the 1 second
task blocks.

¢ The Rate Transition update uses the output of the 2 second task in its update
of its internal state.

Sample Rate Transitions

® The Rate Transition update uses the state of the Rate Transition in the 1
second task.

The output portion of a Rate Transition block is executed at the sample rate of
the slower block, but with the priority of the faster block. Since the Rate
Transition block drives the faster block and has effectively the same priority,
it is executed before the faster block. This solves the first problem.

The second problem is alleviated because the Rate Transition block executes at
a slower rate and its output does not change during the computation of the
faster block it is driving.

Note This use of the Rate Transition block changes the model. The output of
the slower block is now delayed by one time step compared to the output
without a Rate Transition block.

8-21

8 Models with Multiple Sample Rates

8-22

Singletasking and Multitasking
Execution of a Model: an Example

In this section we will examine how a simple multirate model executes in both
real time and simulation, using a fixed-step solver. We will consider the
operation of both SingleTasking and MultiTasking solver modes.

The example model is shown in Figure 8-10. We will refer to the six blocks of
the model as A through F, as labelled in the block diagram.

Note that the execution order of the blocks (indicated in the upper right of each
block) has been forced into the order shown by assigning higher priorities to
blocks F, E, and D. The ordering shown is one possible valid execution ordering
for this model. (See “Determining Block Update Order” in Using Simulink.)

The execution order is determined by data dependencies between blocks. In a
real-time system, the execution order determines the order in which blocks
execute, within a given time interval or task. In this discussion we will treat
the model’s execution order as a given, since we are concerned with the
allocation of block computations to tasks, and to the scheduling of task
execution.

ey 4 z 1 o
oIS N S 1 ° bt O T | y=Crin)+Dun)
R = = g e e = = e S 7| xoh=AxBu)
A E - c o E F
Sine Wave Rate Transition Discrete Filter Rate Transition Discrete-Time Integrator Discrete State-Space
SampleTime=0.01 (Fast to Slow) SampleTime =1 (Slow to Fast) SampleTime=.01 SampleTime=.01

Figure 8-10: Example Model with Multiple Rates and Transition Blocks

Note The discussion and timing diagrams in this section is based on the
assumption that the Rate Transition blocks are used in the default
(Protected/Deterministic) mode, with the Ensure data integrity during data
transfer and Ensure deterministic data transfer (maximum delay) options
on.

Singlefasking and Multitasking Execution of a Model: an Example

Singletasking Execution

In this section, we will consider the execution of the model when the solver
mode is SingleTasking.

Note that in a singletasking system, if the Block reduction option is on,
fast-to-slow Rate Transition blocks are optimized out of the model. We show
the default case (Block reduction on); therefore block B does not appear in the
timing diagrams in this section.

Table 8-1 shows, for each block in the model, the execution order, sample time,
and whether the block has an output or update computation. Block A does not
have discrete states, and accordingly does not have an update computation.

Table 8-1: Execution Order and Sample Times (Singletasking)

Blocks Sample Time Output Update
(in Execution Order) (in seconds)

F 0.1 Y Y

E 0.1 Y Y

D 1 Y Y

A 0.1 Y N

C 1 Y Y

Real-Time Singletasking Execution

Figure 8-11 shows the scheduling of computations when the generated code is
deployed in a real-time system. The generated program is shown running in
real time, under control of interrupts from a 10 Hz timer.

8-23

8 Models with Multiple Sample Rates

8-24

Output: |FEDAC : FEA |FEDAO:

(wait) (wait)
Update: FEDC] | [FE | FE] - FEDC|.
| I | |
I I i | ...
Time: 0.0 0.1 0.2 1.0

Figure 8-11: Singletasking Execution of Model in a Real-Time System

At time 0.0, 1.0, and every second thereafter, both the slow and fast blocks
execute their output computations; this is followed by update computations for
blocks that have states. Within a given time interval, output and update
computations are sequenced in block execution order.

The fast blocks execute on every tick, at intervals of 0.1 sec. Output
computations are followed by update computations.

Note that the system spends some portion of each time interval (labelled
“wait”) idling. During the intervals when only the fast blocks execute, a larger
portion of the interval is spent idling. This illustrates an inherent inefficiency
of SingleTasking mode.

Singlefasking and Multitasking Execution of a Model: an Example

Simulated Singletasking Execution

Figure 8-12 shows the execution of the model in Simulink via the simulation
loop.

Output: |FEDAC | FEA FEA |FEDAC ‘

Update:

S|
=
S|
=

| |
I . |_ gl
Time: (.0 0.1 0.2 1.0

Figure 8-12: Singletasking Execution of Model in Simulink

Since time is simulated, the placement of ticks represents the iterations of the
simulation loop. Blocks execute in exactly the same order as in Figure 8-11, but
without the constraint of a real-time clock. Therefore there is no idle time
between simulated sample periods.

Multitasking Execution

In this section, we will consider the execution of the model when the solver
mode is MultiTasking. Block computations are executed under two tasks,
prioritized by rate:

¢ The slower task, which gets lower priority, is scheduled to run every second.
We will refer to this as the 1 second task.

¢ The faster task, which gets higher priority, is scheduled to run 10 times per
second. We will refer to this as the 0.1 second task. The 0.1 second task can
preempt the 1 second task.

Table 8-2 shows, for each block in the model, the execution order, the task
under which the block runs, and whether the block has an output or update

8-25

8 Models with Multiple Sample Rates

computation.Blocks A and B do not have discrete states, and accordingly do not
have an update computation.

Table 8-2: Task Allocation of Blocks in Multitasking Execution

Blocks Task Output Update
(in Execution Order)
F 0.1 second task Y Y
E 0.1 second task Y Y
D Output promoted to run Y Y
under 0.1 second task (see
“Block Priority
Promotions”)

Update runs under 1
second task

A 0.1 second task Y N

B Promoted torununder0.1 Y N
second task (see “Block
Priority Promotions”)

C 1 second task Y Y

8-26

Singlefasking and Multitasking Execution of a Model: an Example

Real-Time Multitasking Execution

Figure 8-13 shows the scheduling of computations in MultiTasking solver
mode when the generated code is deployed in a real-time system.The generated

program is shown running in real time, as two tasks under control of interrupts
from a 10 Hz timer.

1 SECOND TASK

Output R — ch—
E E
5 g
Updat 2 s
paate: e D =
: :
| |
I = |
Time: 0.0 1.0
0.1 SECOND TASK

Update FEl 3 [

| | | | |
| | | I e
Time: 0.0 0.1 0.2 1.0 1.1

Figure 8-13: Multitasking Execution of Model in a Real-Time System

8-27

8 Models with Multiple Sample Rates

8-28

Block Priority Promotions. Notice following block “promotions”:

¢ The rate-transition block B has been promoted to run at higher task priority,
under the 0.1 second task. However, B still executes only at 1-second
intervals, (that is, at every 10th tick of the 1-second task). In other words, B
runs at the higher priority but at the slower rate.

This promotion is required because C requires input from B. Running B at
higher task priority ensures that the output computation of B is always
completed before C needs it.

¢ The output computation for rate-transition block D has also been promoted
to run at higher task priority, under the 0.1 second task. Like B, D’s output
still executes only at 1-second intervals.

® The update computation for block D runs under the lower-priority 1 second
task, at the same priority as C. This is because the state of D is dependent
upon the output of C.

On each tick, all the outputs and updates for the faster blocks must run before
the lower-priority block (C) gets any run time. Only block C runs entirely in the
1 second task. In Figure 8-13, C does not complete its output computation
within the first 0.1 second tick, so it is preempted by the higher-priority task
at time 0.1. C then resumes and completes, at which point the update function
for D is executed. There is then some idle time before the next tick.

If the computations for block C were to take longer than 1 second, an interrupt
overflow error condition would exist.

Notice that in multitasking mode, the program makes more efficient use of
time than in singletasking mode, as it spends less time in an idle state.

Singlefasking and Multitasking Execution of a Model: an Example

Simulated Multitasking Execution

Figure 8-14 shows the execution of the same model in Simulink, in
MultiTasking solver mode. In this case, Simulink runs all blocks in one thread
of execution, simulating multitasking. No preemption occurs.

1 SECOND
BLOCKS

Update: |?C
| |
I - -
Time: 0.0 1.0

0.1 SECOND
BLOCKS

Update:

l I I . | I
| l | | >

Time: 0.0 0.1 0.2 1.0 1.1

Figure 8-14: Multitasking Execution of Model in Simulink

8-29

8 Models with Multiple Sample Rates

8-30

Optimizing the Model for
Code Generation

You can optimize memory usage and performance of code generated from your model by Real-Time
Workshop a number of ways. Here we discuss optimization techniques that are common to all target
configurations and code formats. For optimizations specific to a particular target configuration, see
the chapter relevant to that target. Topics covered here include the following:

General Modeling Techniques (p. 9-2)
Expression Folding (p. 9-3)
Conditional Branch Execution (p. 9-25)
Block Diagram Performance Tuning
(p. 9-26)

Stateflow Optimizations (p. 9-43)

Simulation Parameters (p. 9-44)

Compiler Options (p. 9-46)

Optimizations that you can use with any target
configuration

A default optimization that significantly reduces the need
to compute and store temporary results

A default optimization for executing inputs to switch
blocks only as often as required

How to efficiently use look-up tables, accumulator
constructs, and data types

Ways to optimize models containing Stateflow blocks

Options on the Simulation Parameters dialog box that
affect code optimization

Hints for helping your compiler build more efficient
executables

9 Optimizing the Model for Code Generation

General Modeling Techniques

The following are techniques that you can use with any code format:

¢ The slupdate command automatically converts older models to use current
features. Run slupdate on old models.

¢ Directly inline C code S-functions into the generated code by writing a TLC
file for the S-function. See the Target Language Compiler documentation for
more information on inlining S-functions. Also see “Creating Device Drivers”
on page 14-39 for information on inlining device driver S-functions.

¢ Use a Simulink data type other than double when possible. The available
data types are Boolean, signed and unsigned 8-, 16-, and 32-bit integers, and
32- and 64-bit floats. A double is a 64-bit float. See Using Simulink for more
information on data types.

® Remove repeated values in lookup table data.

¢ Use the Merge block to merge the output of function-call subsystems. This
block is particularly helpful when controlling the execution of function-call
subsystems with Stateflow.

This diagram is an example of how to use the Merge block.

[E] merge IS[=] E3

File Edit “iew Simulation Format Tools

D& =8 » = | &

- double) double

In1

Merge doubleI n
Out
Merge
Chart el
- double i out double

In2

SubSystem

Ready R0 [| FivedStepDiscrete i

9-2

Expression Folding

Expression Folding

Expression folding is a code optimization technique that minimizes the
computation of intermediate results at block outputs and the storage of such
results in temporary buffers or variables. When expression folding is on,
Real-Time Workshop collapses, or “folds,” block computations into single
expressions, instead of generating separate code statements and storage
declarations for each block in the model.

Expression folding can dramatically improve the efficiency of generated code,
frequently achieving results that compare favorably to hand-optimized code. In
many cases, entire groups of model computations fold into a single highly
optimized line of code.

By default, expression folding is on. The Real-Time Workshop code generation
options are configured to use expression folding wherever possible. Most
Simulink blocks support expression folding.

You can also take advantage of expression folding in your own inlined
S-function blocks. See “Supporting Expression Folding in S-Functions” on
page 9-10 for information on how to do this.

In the code generation examples that follow, note that signal storage
optimizations (Signal storage reuse, Buffer reuse and Local block outputs)
are turned on.

Expression Folding Example

As a simple example of how expression folding affects the code generated from
a model, consider the model shown in Figure 9-1.

k1

Wz

Out1

Product

Figure 9-1: Expression Folding Example Model

9-3

9 Optimizing the Model for Code Generation

94

With expression folding on, this model generates a single-line output
computation, as shown in this Md10utputs function.

void MdlOutputs(int_T tid)
{
/* tid is required for a uniform function interface. This system
* is single rate, and in this case, tid is not accessed. */
UNUSED_PARAMETER (tid);

/* Outport: '<Root>/Outi1' incorporates:
* Product: '<Root>/Product’

* Gain: '<Root>/k1'

* Inport: '<Root>/Int'

* Gain: '<Root>/k2'

* Inport: '<Root>/In2'

* Regarding '<Root>/k1':
* Gain value: rtP.k1_Gain

* Regarding '<Root>/k2':
* Gain value: rtP.k2_Gain
*/
rty.out1 = ((rtP.k1_Gain * rtU.i1) * (rtP.k2_Gain * rtu.i2));
}

The generated comments indicate the block computations that were combined
into a single expression. The comments also document the block parameters
that appear in the expression.

With expression folding off, the same model computes temporary results for
both Gain blocks and the Product block before the final output, as shown in this
Md1Outputs function.

void Md1lOutputs(int_T tid)

{
/* local block i/o variables */
real T rtb_s2;
real T rtb_tempt;

/* tid is required for a uniform function interface. This system
* is single rate, and in this case, tid is not accessed. */
UNUSED_PARAMETER(tid);

Expression Folding

/* Gain Block: '<Root>/k1'
* Gain value: rtP.k1_Gain
*/

rtb_tempt = rtU.i1 * rtP.k1_Gain;

/* Gain Block: '<Root>/k2'
* Gain value: rtP.k2_Gain
*/

rtb_s2 = rtU.i2 * rtP.k2_Gain;

/* Product Block: '<Root>/Product' */
rtb_temp1 = rtb_temp1 * rtb_s2;

/* Outport Block: '<Root>/OQuti1' */

rtyY.out1 = rtb_tempt;
}

For a example of expression folding in the context of a more complex model,
link to the exprfolding demo, or type the following command at the MATLAB
prompt.

exprfolding

Using and Configuring Expression Folding

The options described in this section let you control the operation of expression
folding.

Enabling Expression Folding

Expression folding operates only on expressions involving local variables.
Expression folding is therefore available only when both the Signal storage
reuse and Local block outputs code generation options are on.

For a new model, default code generation options are set to use expression
folding. If you are configuring an existing model, you can ensure that
expression folding is turned on as follows:

9-5

9 Optimizing the Model for Code Generation

9-6

Select the Signal storage reuse option on the Advanced pane of the
Simulation Parameters dialog box.

Select the Local block outputs option in the General code generation
options category of the Real-Time Workshop pane of the Simulation
Parameters dialog box.

Access the expression folding related options by selecting General code
generation options (cont.) from the Category menu of the Real-Time
Workshop pane.

The expression folding options are shown in Figure 9-2. By default, all
expression folding related options are selected, as shown. These options are
detailed in “Expression Folding Options” on page 9-6.

If necessary, select the Expression folding option and click Apply.

=10l

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Category: I General code generation options [cont.] j Biuild |

Options
¥ Buffer reuse

¥ Expression folding
¥ Fold unralled vectars

¥ Enforce integer downcast

QK | Eancell Help | Apply |

Figure 9-2: Expression Folding Options

Expression Folding Options

This section discusses the available code generation options related to
expression folding.

Expression Folding

Expression Folding. This option turns the expression folding feature on or off.
When Expression folding is selected, the Fold unrolled vectors and Enforce
integer downcast options are available.

Alternatively, you can turn expression folding on or off from the MATLAB
command line via the command

set_param(gcs, 'RTWExpressionDepthLimit', val)

If val = 1, expression folding is turned on. If val = 0, expression folding is
turned off.

Fold Unrolled Vectors. We recommend that you leave this option on, as it will
decrease the generated code (ROM) size.

Turning Fold unrolled vectors off will speed up code generation for vector
signals whose widths are less than the Loop rolling threshold (See “Loop
Rolling Threshold” on page 2-8). You may want to consider turning Fold
unrolled vectors off if:

® You are concerned with code generation speed.

® You mostly work with scalar signals.

® You mostly work with signals above the loop rolling threshold.

To understand the effect of Fold unrolled vectors, consider the model shown
in this diagram.

Product

The input signals i1 and i2 are vectors of width 3. The input signal elements
are represented in the generated code as members of the rtU structure
(rtU.i1[n] and rtu.i2[n]).

Assuming the model’s loop rolling threshold is greater than 3, (the default
threshold is 5) computations on i1 are not rolled into a for loop. If Fold

9-7

9 Optimizing the Model for Code Generation

unrolled vectors is on, the gain computations for elements of i1 and i2 are
folded into the Outport block computations, as shown in this Md10utputs
function.

void MdlOutputs(int_T tid)
/* tid is required for a uniform function interface. This system
* is single rate, and in this case, tid is not accessed. */
UNUSED_PARAMETER(tid);

/* Outport: <Root>/Outi1 incorporates:
Product: <Root>/Product

Gain: <Root>/k1

Inport: <Root>/Int

Gain: <Root>/k2

Inport: <Root>/In2

Regarding <Root>/k1:
Gain value: rtP.k1_Gain

E R R

Regarding <Root>/k2:
Gain value: rtP.k2_Gain

*

*/
rtY.out1[0] =
rtY.Out1[1]
rty.out1[2] =

}

If Fold unrolled Vectors is off, computations for elements of i1 and i2 are
implemented as separate code statements, with intermediate results stored in
temporary variables, as shown in this Md10utputs function.

((rtP.k1_Gain * rtU.i1[0]) * (rtP.k2_Gain * rtU.i2[0]));
((rtP.k1_Gain * rtU.i1[1]) * (rtP.k2_Gain * rtU.i2[1]));
((rtP.k1_Gain * rtU.i1[2]) * (rtP.k2_Gain * rtU.i2[2]));

void MdlOutputs(int_T tid)

{
/* local block i/o variables */
real_T rtb_s2[3];
real_T rtb_temp1[3];

/* tid is required for a uniform function interface. This system
* is single rate, and in this case, tid is not accessed. */
UNUSED_PARAMETER (tid);

/* Gain: '<Root>/k1' incorporates:

* Inport: '<Root>/Int'

*

* Regarding '<Root>/k1':

* Gain value: rtP.k1_Gain

*/
rtb_temp1[0] = rtU.i1[0] * rtP.k1_Gain;
rtb_tempi[1] rtU.i1[1] * rtP.k1_Gain;
rtb_tempi1[2] rtU.i1[2] * rtP.k1_Gain;

9-8

Expression Folding

/* Gain: '<Root>/k2' incorporates:
* Inport: '<Root>/In2'

*

* Regarding '<Root>/k2':

* Gain value: rtP.k2_Gain

*/

rtb_s2[0] = rtU.i2[0] * rtP.k2_Gain;
rtb_s2[1] = rtU.i2[1] * rtP.k2_Gain;
rtb_s2[2] = rtU.i2[2] * rtP.k2_Gain;

/* Product: '<Root>/Product' */

rtb_temp1[0] = rtb_temp1[0] * rtb_s2[0];
rtb_temp1[1] rtb_temp1[1] * rtb_s2[1];
rtb_tempi1[2] rtb_temp1[2] * rtb_s2[2];

/* Outport: '<Root>/Out1' */

rtY.out1[0] = rtb_temp1[0];
rtY.Out1[1] = rtb_temp1[1];
rtY.out1[2] = rtb_temp1[2];

}

Enforce Integer Downcast. This option refers to 8-bit operations on 16-bit
microprocessors and 8 and 16-bit operations on 32-bit microprocessors. To
ensure consistency between simulation and code generation, the results of 8
and 16-bit integer expressions must be explicitly downcast.

Deselecting this option improves code efficiency. However, the primary effect

of deselecting this option is that expressions involving 8 and 16-bit arithmetic
are less likely to overflow in code than they are in simulation. We recommend
that you turn on Enforce integer downcast for safety. Turn the option off only
if you are concerned with generating the smallest possible code, and you know
that 8 and 16-bit signals will not overflow.

As an example, consider this model.

- el

Sine fave Data Type Conwversion Gain Gaint Gainkata Type Conversion

The following code fragment shows the output computation (within the
Md1Outputs function) when Enforce integer downcast is on. The Gain blocks
are folded into a single expression. In addition to the typecasts generated by
the Type Conversion blocks, each Gain block output is cast to int8 T.

9-9

9 Optimizing the Model for Code Generation

9-10

int8_T rtb_Data_Type_Conversion;

rtY.out1 = (int16_T) (int8_T) (rtP.Gain2_Gain * (int8_T)(rtP.Gain1_Gain *
(int8_T) (rtP.Gain_Gain * rtb_Data_Type_Conversion)));
If Enforce integer downcast is off, the code contains only the typecasts
generated by the Type Conversion blocks, as shown in the following code
fragment.

int8_T rtb_Data_Type_Conversion;

rtY.out1 = (int16_T)(rtP.Gain2_Gain * (rtP.Gain1_Gain * (rtP.Gain_Gain *
rtb_Data_Type_Conversion)));

Supporting Expression Folding in S-Functions

This section describes how you can take advantage of expression folding to
increase the efficiency of code generated by your own inlined S-function blocks
by calling macros provided in the S-Function API.

This section assumes that you are familiar with:

® Writing inlined S-functions (see “Writing S-Functions” in the Simulink
documentation).

® The Target Language Compiler (see the Target Language Compiler
documentation).

The S-Function API lets you specify whether a given S-Function block should
nominally accept expressions at a given input port. A block should not always
accept expressions. For example, if the address of the signal at the input is
used, expressions should not be accepted at that input, because it is not
possible to take the address of an expression.

The S-Function API also lets you specify whether an expression can represent
the computations associated with a given output port. When you request an
expression at a block’s input or output port, Simulink determines whether or
not it can honor that request, given the block’s context. For example, Simulink
may deny a block’s request to output an expression if the destination block does
not accept expressions at its input; if the destination block has an update
function; or if there are multiple output destinations.

Expression Folding

The decision to honor or deny a request to output an expression can also depend
on the category of output expression the block uses (see “Categories of Output
Expressions” on page 9-11).

In the sections that follow, we explain:

¢ When and how you can request that a block accept expressions at an input
port.

¢ When and how you can request that a block generate expressions at an
outport.

® The conditions under which Simulink will honor or deny such requests.

To take advantage of expression folding in your S-functions, you need to
understand when it is appropriate to request acceptance and generation of
expressions for specific blocks. It is not necessary for you to understand the
algorithm by which Simulink chooses to accept or deny these requests.
However, if you want to trace between the model and the generated code, it will
be helpful to understand some of the more common situations which lead to
denial of a request.

Categories of Output Expressions

When you implement a C-MEX S-function, you can specify whether the code
corresponding to a block’s output is to be generated as an expression. If the
block generates an expression, you must specify that the expression is constant,
trivial, or generic.

A constant output expression is a direct access to one of the block’s parameters.
For example, the output of a Constant block is defined as a constant expression,
because the output expression is simply a direct access to the block’s Value
parameter.

A trivial output expression is an expression that may be repeated, without any
performance penalty, when the output port has multiple output destinations.
For example, the output of a Unit Delay block is defined as a trivial expression,
because the output expression is simply a direct access to the block’s state.
Since the output expression involves no computations, it may be repeated more
than once without degrading the performance of the generated code.

A generic output expression is an expression that should be assumed to have a
performance penalty if repeated. As such, a generic output expression is not
suitable for repeating when the output port has multiple output destinations.

9-11

9 Optimizing the Model for Code Generation

9-12

For instance, the output of a Sum block is a generic rather than a trivial
expression because, it is costly to recompute a Sum block output expression as
an input to multiple blocks.

Examples of Trivial and Generic Output Expressions

Consider the block diagram of Figure 9-3. The Delay block has multiple
destinations, yet its output is designated as a trivial output expression, so that
it can be used more than once without degrading the efficiency of the code.

Figure 9-3: Diagram With Delay Block Routed to Multiple Destinations

The following code excerpt shows code generated from the Unit Delay block in
this block diagram. Note that the three root outputs are directly assigned from
the state of the Unit Delay block, which is stored in a field of the global data
structure rtDWork. Since the assignment is direct, involving no expressions,
there is no performance penalty associated with using the trivial expression for
multiple destinations.

void Md1lOutputs(int_T tid)
{

/* Outport: <Root>/Outi1 incorporates:

* UnitDelay: <Root>/Unit Delay */
rtY.Out1 = rtDWork.Unit_Delay_ DSTATE;

/* Outport: <Root>/0ut2 incorporates:
* UnitDelay: <Root>/Unit Delay */
rtY.Out2 = rtDWork.Unit_Delay_ DSTATE;

Expression Folding

/* Outport: <Root>/0ut3 incorporates:
* UnitDelay: <Root>/Unit Delay */
rtY.out3 = rtDWork.Unit_Delay_ DSTATE;

}
On the other hand, consider the Sum blocks in Figure 9-4.

Sine Wawve

Figure 9-4: Diagram With Sum Block Routed to Multiple Destinations

The upper Sum block in Figure 9-4 generates the signal labelled non_triv.
Computation of this output signal involves two multiplications and an
addition. If the Sum block’s output were permitted to generate an expression
even when the block had multiple destinations, the block’s operations would be
duplicated in the generated code. In the case illustrated, the generated
expressions would proliferate to four multiplications and two additions. This
would degrade the efficiency of the program. Accordingly the output of the Sum
block is not allowed to be an expression since it has multiple destinations

The code generated for the block diagram of Figure 9-4 illustrates how code is
generated for Sum blocks with single and multiple destinations.

The Simulink engine does not permit the output of the upper Sum block to be
an expression, since the signal non_triv is routed to two output destinations.
Instead, the result of the multiplication and addition operations is stored in a
temporary variable (rtb_non_triv) that is referenced twice in the statements
that follow, as seen in the code excerpt below.

In contrast, the lower Sum block, which has only a single output destination
(Out2), does generate an expression.

9-13

9 Optimizing the Model for Code Generation

void MdlOutputs(int_T tid)

{
/* local block i/o variables */
real T rtb_non_triv;
real T rtb_Sine_Wave;

/* Sum: <Root>/Sum incorporates:
* Gain: <Root>/Gain
* Inport: <Root>/ul
* Gain: <Root>/Gain1
* Inport: <Root>/u2

* Regarding <Root>/Gain:
* Gain value: rtP.Gain_Gain

* Regarding <Root>/Gaint:

* Gain value: rtP.Gain1_Gain

*/

rtb_non_triv = (rtP.Gain_Gain * rtU.ul) + (rtP.Gain1_Gain *
rtu.u2);

/* Outport: <Root>/Outl */
rtY.out1 = rtb_non_triv;

/* Sin Block: <Root>/Sine Wave */

rtb_Sine_Wave = rtP.Sine_Wave_Amp *
sin(rtP.Sine_Wave_Freq * rtmGetT(rtM_model) +
rtP.Sine_Wave_Phase) + rtP.Sine_Wave_Bias;

/* Outport: <Root>/Out2 incorporates:

* 8um: <Root>/Sumi

*/

rtY.out2 = (rtb_non_triv + rtb_Sine_Wave);

}

Specifying the Category of an Output Expression

The S-Function API provides macros that let you declare whether an output of
a block should be an expression, and if so, to specify the category of the

9-14

Expression Folding

expression. Table 9-1 specifies when to declare a block output to be a constant,
trivial, or generic output expression.

Table 9-1: Types of Output Expressions

Category of When to Use
Expression
Constant Use only if block output is a direct memory access to a

block parameter

Trivial Use only if block output is an expression that may
appear multiple times in the code without reducing
efficiency (for example, a direct memory access to a
field of the DWork vector, or a literal)

Generic Use if output is an expression, but not constant or
trivial

You must declare outputs as expressions in the md1SetWorkwidths function,
using macros defined in the S-Function API. The macros have the following
arguments:

® SimStruct *S: pointer to the block’s SimStruct.

® int idx: zero-based index of the output port.

® bool value: pass in TRUE if the port generates output expressions.

The following macros are available for setting an output to be a constant,
trivial, or generic expression:

® void ssSetOutputPortConstantOutputExprInRTW(SimStruct *S, int idx, bool value)
® yoid ssSetOutputPortTrivialOutputExprInRTW(SimStruct *S, int idx, bool value)
® void ssSetOutputPortOutputExprInRTW(SimStruct *S, int idx, bool value)

The following macros are available for querying the status set by any prior calls
to the macros above:

® pool ssGetOutputPortConstantOutputExprInRTW(SimStruct *S, int idx)
® pool ssGetOutputPortTrivialOutputExprInRTW(SimStruct *S, int idx)
® hool ssGetOutputPortOutputExprInRTW(SimStruct *S, int idx)

9-15

9 Optimizing the Model for Code Generation

9-16

Note that the set of generic expressions is a superset of the set of trivial
expressions, and the set of trivial expressions is a superset of the set of constant
expressions.

Therefore, when you query an output that has been set to be a constant
expression with ssGetOutputPortTrivialOutputExprInRTW, it will return
True. A constant expression is considered a trivial expression, because it is a
direct memory access that may be repeated without degrading the efficiency of
the generated code.

Similarly, an output that has been configured to be a constant or trivial
expression will return true when queried for its status as a generic expression.

Acceptance or Denial of Requests for
Input Expressions

A block can request that its output be represented in code as an expression.
Such a request may be denied if the destination block cannot accept
expressions at its input port. Furthermore, conditions independent of the
requesting block and its destination block(s) can prevent acceptance of
expressions.

In this section, we will discuss block-specific conditions under which requests
for input expressions are denied. For information on other conditions that
prevent acceptance of expressions, see “Generic Conditions for Denial of
Requests to Output Expressions” on page 9-19.

A block should not be configured to accept expressions at its input port under
the following conditions:

¢ The block must take the address of its input data. It is not possible to take
the address of most types of input expressions.

® The code generated for the block will reference the input more than once (e.g.

the Abs or Max blocks). This would lead to duplication of a potentially
complex expression and a subsequent degradation of code efficiency.

If a block refuses to accept expressions at an input port, then no block that is
connected to that input port is permitted to output a generic or trivial
expression.

Expression Folding

A request to output a constant expression is never denied, because there is no
performance penalty for a constant expression, and it is always possible to take
the parameter’s address.

Example: Acceptance and Denial of Expressions at Block Inputs

This example illustrates how various built-in blocks handle requests to accept
different categories of expressions at their inputs.

The sample model of Figure 9-5 contains:

® Two Gain blocks. Gain blocks request their destination blocks to accept
generic expressions.

® An Abs block. This block always denies expressions at its input port. The Abs
block code uses the macro rt_ABS(u), which evaluates the input u twice. (see
the TLC implementation of the Abs block in
matlabroot/rtw/c/tlc/blocks/absval.tlc.)

¢ A Trigonometric Function block. This block accepts expressions at its input
port.

D [

ZainZ Trigonometric
Function

Figure 9-5: Two Gain Blocks Requesting to Output an Expression

The Gainl block’s request to output an expression is denied by the Abs block.
The Gain2 block's request to output an expression is accepted by the
Trigonometric Function block.

The generated code is shown in the code excerpt below. Note that the output of
the Gainl block is stored in the temporary variable rtb_Gain1, rather than
generating an input expression to the Abs block.

void Md1lOutputs(int_T tid)

{

/* local block i/o variables */
real_T rtb_Gaint;

9-17

9 Optimizing the Model for Code Generation

/* Gain: '<Root>/Gaini' incorporates:
* Inport: '<Root>/Int'

*

* Regarding '<Root>/Gain':

* Gain value: 2.0

*/

rtb_Gaini = rtU.Int1 * 2.0;

/* Outport: '<Root>/Outi1' incorporates:
* Abs: '<Root>/Abs'

*/

rtY.out1 = rt_ABS(rtb_Gaini);

/* Outport: '<Root>/0Out2' incorporates:

* Trigonometry: '<Root>/Trigonometric Function'
* Gain: '<Root>/Gain2'

* Inport: '<Root>/In2'

* Regarding '<Root>/Gain2':

* Gain value: 2.0

*/
rtY.out2 = sin((2.0 * rtU.In2));
}

Using the S-Function API to Specify Input Expression Acceptance
The S-Function API provides macros that let you:

® Specify whether a block input should accept non-constant expressions (i.e.
trivial or generic expressions).

® Query whether a block input accepts non-constant expressions.

By default, block inputs do not accept non-constant expressions.

You should call the macros in your md1SetWorkWidths function. The macros
have the following arguments:

® SimStruct *S: pointer to the block’s SimStruct.

® int idx: zero-based index of the input port.

® bool value: pass in TRUE if the port accepts input expressions; otherwise
pass in FALSE.

9-18

Expression Folding

The macro available for specifying whether or not a block input should accept
a non-constant expression is as follows:

void ssSetInputPortAcceptExprInRTW(SimStruct *S, int portIdx, bool value)

The corresponding macro available for querying the status set by any prior
calls to ssSetInputPortAcceptExprInRTW is as follows:

bool ssGetInputPortAcceptExprInRTW(SimStruct *S, int portIdx)

Generic Conditions for Denial of Requests to Output Expressions

Even after a specific block requests that it be allowed to generate an output
expression, that request may be denied, for generic reasons. These reasons
include, but are not limited to:

¢ The output expression is non-trivial, and the output has multiple
destinations

® The output expression is non-constant, and the output is connected to at
least one destination that does not accept expressions at its input port

¢ The output is a test point
¢ The output has been assigned an external storage class

¢ The output must be stored using global data (e.g. is an input to a merge
block, or a block with states)

¢ The output signal is complex

You do not need to consider these generic factors when deciding whether or not
to utilize expression folding for a particular block. However, these rules may be
helpful when examining generated code, and analyzing cases where the
expression folding optimization is suppressed.

Utilizing Expression Folding in Your TLC Block
Implementation

To take advantage of expression folding, an inlined S-Function must be
modified in two ways:

¢ It must tell Simulink whether it generates or accepts expressions at its input
ports, as described in “Using the S-Function API to Specify Input Expression
Acceptance” on page 9-18.

9-19

9 Optimizing the Model for Code Generation

9-20

¢ It must tell Simulink whether it generates or accepts expressions at its
output ports, as described in “Categories of Output Expressions” on
page 9-11.

® The TLC implementation of the block must be modified.

In this section, we discuss required modifications to the TLC implementation.

Expression Folding Compliance

In the BlockInstanceSetup function of your S-function, you must ensure that
your block registers that it is compliant with expression folding. If you fail to
do this, any expression folding requested or allowed at the block’s outputs or
inputs will be disabled, and temporary variables will be utilized. To register
expression folding compliance, call the TLC library function

%sLibBlockSetIsExpressionCompliant (block)

Note that you can conditionally disable expression folding at the inputs and
outputs of a block by making the call to this function conditionally.

If you have overridden one of the TLC block implementations provided by
Real-Time Workshop with your own implementation, you should not make the
above call until you have updated your implementation, as described by the
guidelines for expression folding in the following sections.

Outputting Expressions

The BlockOutputSignal function is used to generate code for a scalar output
expression, or one element of a non-scalar output expression. If your block
outputs an expression, you should add a BlockOutputSignal function. The
prototype of the BlockOutputSignal is

%sfunction BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void
The arguments to BlockOutputSignal are as follows:
® block: the record for the block for which an output expression is being
generated.
e system: the record for the system containing the block.

® portIdx: zero-based index of the output port for which an expression is being
generated.

® ucv: user control variable defining the output element for which code is being
generated.

Expression Folding

® 1cv: loop control variable defining the output element for which code is being
generated

¢ idx: signal index defining the output element for which code is being
generated

® retType: string defining the type of signal access desired:
"Signal" specifies the contents or address of the output signal.

"SignalAddr" specifies the address of the output signal.)

The BlockOutputSignal function returns an appropriate text string for the
output signal or address. The string should enforce the precedence of the
expression by utilizing opening and terminating parentheses, unless the
expression consists of a function call. The address of an expression may only be
returned for a constant expression; it is the address of the parameter whose
memory is being accessed. The code implementing the BlockOutputSignal
function for the Constant block is shown below.

P

% Function: BlockOutputSignal
Abstract:
Return the appropriate reference to the parameter. This function *may*
be used by Simulink when optimizing the Block IO data structure.

o o o o of
o o° o o°

function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void
%sswitch retType
%case "Signal"
%sreturn LibBlockParameter(Value,ucv,lcv,idx)
%scase "SignalAddr"
%sreturn LibBlockParameterAddr(Value,ucv,lcv,idx)

%sdefault
%assign errTxt = "Unsupported return type: S%<retType>"
%<LibBlockReportError(block,errTxt)>
sendswitch
sendfunction

The code implementing the BlockOutputSignal function for the Relational
Operator block is shown below.

9-21

9 Optimizing the Model for Code Generation

9-22

o

% Function: BlockOutputSignal
% Abstract:

Return an output expression. This function *may*

be used by Simulink when optimizing the Block IO data structure.

o

o o o of
o o° o°

function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void
%sswitch retType
%scase "Signal"
%assign logicOperator = ParamSettings.Operator
%if ISEQUAL (logicOperator, "~=")
%sassign op = "!="
%elseif ISEQUAL (logicOperator, "==")
%assign op = "=="
%else
%assign op = logicOperator
sendif
%assign u0 = LibBlockInputSignal(0O, ucv, lcv, idx)
%assign ul = LibBlockInputSignal(1, ucv, lcv, idx)
sreturn " (%<u0> %<op> S%<ui>)"

%sdefault
%assign errTxt = "Unsupported return type: %<retType>"
%<LibBlockReportError(block,errTxt)>
%sendswitch
%sendfunction

Expression Folding for Blocks with Multiple Outputs

When a block has a single output, the Outputs function in the block’s TLC file
is called only if the output is not an expression. Otherwise, the
BlockOutputSignal function is called.

If a block has multiple outputs, the Outputs function will be called if any output
port is not an expression. The Outputs function should guard against
generating code for output ports that are expressions. This is achieved by
guarding sections of code corresponding to individual output ports with calls to
LibBlockOutputSignalIsExpr().

For example, consider an S-Function with two inputs and two outputs, where:

¢ The first output, y0, is equal to two times the first input
® The second output, y1, is equal to four times the second input.

Expression Folding

The Outputs and BlockOutputSignal functions for the S-function are shown in
the following code excerpt.

% Function: BlockOutputSignal
% Abstract:

Return an output expression. This function *may*

be used by Simulink when optimizing the Block IO data structure.

o of

o of
o° of

o of
o°

function BlockOutputSignal(block,system,portIdx,ucv,lcv,idx,retType) void
%sswitch retType
%sassign u = LibBlockInputSignal(portIdx, ucv, lcv, idx)
%case "Signal"
%if portIdx ==
sreturn "(2 * %<u>)"
%elseif portldx ==
sreturn " (4 * %<u>)"
%sendif
%sdefault
%assign errTxt = "Unsupported return type: S%<retType>"
%<LibBlockReportError(block,errTxt)>
sendswitch
sendfunction

% Function: Outputs
Abstract:
Compute output signals of block

o o o of

o° o o°

function Outputs(block,system) Output
%roll sigIdx = RollRegions, lcv = RollThreshold, block, "Roller", rollVars
%assign u0 = LibBlockInputSignal(0O, ucv, lcv, idx)
%assign ul = LibBlockInputSignal(1, ucv, lcv, idx)
%assign y0 = LibBlockOutputSignal(0, ucv, lcv, idx)
%assign y1 = LibBlockOutputSignal(1, ucv, lcv, idx)
if !LibBlockOutputSignalIsExpr(0)
%<y0> = 2 * %<u0>;
sendif
%if !LibBlockOutputSignalIsExpr(1)
%<y1> = 4 * %;
sendif
%sendroll
sendfunction

K

Comments for Blocks That Are Expression Folding Compliant
In the past, all blocks preceded their outputs code with comments of the form

/* %<Type> Block: %<Name> */

When a block is expression folding compliant, the initial line shown above is
generated automatically. You should not include the comment as part of the

9-23

9 Optimizing the Model for Code Generation

9-24

block’s TLC implementation. Additional information should be registered
using the LibCacheBlockComment function.

The LibCacheBlockComment function takes a string as an input, defining the
body of the comment, except for the opening header, the final newline of a
single or multi-line comment, and the closing trailer.

The following TLC code illustrates registering a block comment. Note the use
of the function LibBlockParameterForComment, which returns a string,
suitable for a block comment, specifying the value of the block parameter.

%sopenfile commentBuf
$c(*) Gain value: %<LibBlockParameterForComment(Gain)>
%closefile commentBuf
%<LibCacheBlockComment (block, commentBuf)>

Conditional Branch Execution

Conditional Branch Execution

Conditional input branch execution is a Simulation and code generation
optimization technique that improves model execution when the model
contains Switch and Multiport Switch blocks. By default, the Real-Time
Workshop code generation options are configured to use the conditional input
branch optimization.

When Conditional input branch optimization is on, instead of executing all
blocks driving the Switch block input ports at each time step, only the blocks
required to compute the control input and the data input selected by the control
input are executed.

You can turn conditional input branch optimization on or off by selecting the
Conditional input branch option on the Advanced pane of the Simulation
Parameters dialog box.

For a example of conditional input branch optimization demo, use this link to
the condinputexec demo, or type the following command at the MATLAB
prompt.

condinputexec

9-25

9 Optimizing the Model for Code Generation

9-26

Block Diagram Performance Tuning

Certain block constructs in Simulink will run faster, or require less code or
data memory, than other seemingly equivalent constructs. Knowing the
trade-offs between similar blocks and block parameter options will enable you
to create Simulink models that have intuitive diagrams, and to produce the
tight code that you want from Real-Time Workshop. Many of the options and
constructs discussed in this section will improve the simulation speed of the
model itself, even without code generation.

Look-Up Tables and Polynomials

Simulink provides several blocks that allow approximation of functions. These
include blocks that perform direct, interpolated and cubic spline lookup table
operations, and a polynomial evaluation block.

There are currently six different blocks in Simulink that perform lookup table
operations:

¢ Look-Up Table

® Look-Up Table (2-D)

¢ Look-Up Table (n-D)

¢ Direct Look-Up Table (n-D)

® PreLook-Up Index Search

¢ Interpolation (n-D) Using PreLook-Up Index Search

In addition, the Repeating Sequence block uses a lookup table operation, the
output of which is a function of the real-time (or simulation-time) clock.

To get the most out of the following discussion, you should familiarize yourself
with the features of these blocks, as documented in Using Simulink.

Each type of lookup table block has its own set of options and associated
trade-offs. The examples in this section show how to use lookup tables
effectively. The techniques demonstrated here will help you achieve maximal
performance with minimal code and data sizes.

Multi-Channel Nonlinear Signal Conditioning

Figure 9-6 shows a Simulink model that reads input from two 8-channel,
high-speed 8-bit analog/digital converters (ADCs). The ADCs are connected to

Block Diagram Performance Tuning

Type K thermocouples through a gain circuit with an amplification of 250.
Since the popular Type K thermocouples are highly nonlinear, there is an
international standard for converting their voltages to temperature. In the
range of 0 to 500 degrees Celsius, this conversion is a tenth-order polynomial.
One way to perform the conversion from ADC readings (0-255) into
temperature (in degrees Celsius) is to evaluate this polynomial. In the best
case, the polynomial evaluation requires 9 multiplications and 10 additions per
channel.

A polynomial evaluation is not the fastest way to convert these 8-bit ADC
readings into measured temperature. Instead, the model uses a Direct Look-Up
(n-D) Table block (named TypeK _TC) to map 8-bit values to temperature
values. This block performs one array reference per channel.

>
TCtemp
ADCZ Typek_TC

Figure 9-6: Direct Look-Up Table (n-D) Block Conditions ADC Input

The block’s table parameter is populated with 256 values that correspond to
the temperature at an ADC reading of 0, 1, 2, ... up to 255. The table data,
calculated in MATLAB, is stored in the workspace variable TypeK_0_ 500. The
block’s Table data parameter field references this variable, as shown in
Figure 9-7.

9-27

9 Optimizing the Model for Code Generation

9-28

Block Paramete TC
r— LookupMDDirect [mask)] (link]

Table member selection. Inputs are zero-bazed indices into the table,
£.0., an input of 3 retumns the fourth element in that dimension. Block
cah also be uzed to select a column or 2-0 matrix out of the table.

Mumber of table dimensions: I‘I 'l
Inputs zelect this object from table: IElement 'l

I Make table an input
Table data:
|Typek_0_500)

=

Action for out of range input: I Error j

QK I Cancel | Help | Apply |

Figure 9-7: Parameters of Direct Look-Up Table (n-D) Block

The model uses a Mux block to collect all similar signals (e.g., Type K
thermocouple readings) and feed them into a single Direct Look-Up Table
block. This is more efficient than using one Direct Look-Up Table block per
device. If multiple blocks share a common parameter (such as the table in this
example), Real-Time Workshop creates only one copy of that parameter in the
generated code.

This is the recommended approach for signal conditioning when the size of the
table can fit within your memory constraints. In this example, the table stores
256 double (8-byte) values, utilizing 2 KB of memory.

Note that the TypeK_TC block processes 16 channels of data sequentially.

Real-Time Workshop generates the following code for the TypeK TC block
shown in Figure 9-6.

/* (LookupNDDirect) Block: <Root>/TypeK TC */
/* 1-dimensional Direct Look-Up Table returning 16 Scalars */
{

int_T ift;

const uint8_T *u0 = &rtb_si1_Data_Type_Conversion[0];

real T *y0 = &rtb_root_TypeK_TC[O];

for (i1=0; i1 < 8; il++) {

Block Diagram Performance Tuning

yo[i1] = (rtP.root_TypeK_TC_ table[(uint8_T)uO[i1]]);

}
u0 = &rtb_s2_Data_Type_Conversion[0];
y0 = &rtb_root_TypeK TC[8];

for (1i1=0; i1 < 8; i1++) {
yo[i1] = (rtP.root_TypeK_TC_ table[(uint8_T)uO[i1]]);
}
}

Notice that the core of each loop is one line of code that directly retrieves a table
element from the table and places it in the block output variable. There are two
loops in the generated code because the two simulated ADCs are not merged
into a contiguous memory array in the Mux block. Instead, to avoid a copy
operation, the Direct Look-Up Table block performs the lookup on two sets of
data using a single table array (rtP.root TypeK TC_table[]).

If the input accuracy for your application (not to be confused with the number
of I/0 bits) is 24 bits or less, you can use a single precision table for signal
conditioning. Then, cast the lookup table output to double precision for use in
the rest of the block diagram. This technique, shown in Figure 9-8, causes no
loss of precision.

ADCH > E_.—<> subie)
Data Type TCtemp
ADC2 TypeK_TC Conversion

Figure 9-8: Single Precision Lookup Table Output Is Cast to Double Precision

Note that a direct lookup table covering 24 bits of accuracy would require 64
megabytes of memory, which is typically not practical. To create a single
precision table, use the MATLAB single() cast function in your table

calculations. Alternatively, you can perform the type cast directly in the Table

data parameter, as shown in Figure 9-9.

9-29

9 Optimizing the Model for Code Generation

9-30

Block Parameters: Typek_TC

r— LookupMDDirect [mask)] (link]

Table member selection. Inputs are zero-bazed indices into the table,
£.0., an input of 3 retumns the fourth element in that dimension. Block
cah also be uzed to select a column or 2-0 matrix out of the table.

-
F

Mumber of table dimensions: =
Inputs zelect this object from table: IElement 'l

I Make table an input
Table data:
ISingle[[U:255]"500.-"25B]

Action for out of range input: I Error j

QK I Cancel | Help | Lppli |

Figure 9-9: Type Casting Table Data in a Direct Look-Up Block

When table size becomes impractical, you must use other nonlinear techniques,
such as interpolation or polynomial techniques. The Look-Up Table (n-D) block
supports linear interpolation and cubic spline interpolation.The Polynomial
block supports evaluation of noncomplex polynomials.

Compute-Intensive Equations

The blocks described in this section are useful for simplifying fixed, complex
relationships that are normally too time consuming to compute in real time.

The only practical way to implement some compute-intensive functions or
arbitrary nonlinear relationships in real time is to use some form of lookup
table. On processors that do not have floating-point instructions, even
functions like sqrt () can become too expensive to evaluate in real time.

An approximation to the nonlinear relationship in a known range will work in
most cases. For example, your application might require a square root
calculation that your target processor’s instruction set does not support. The
illustration below shows how you can use a Look-Up Table block to calculate
an approximation of the square root function that covers a given range of the
function.

Block Diagram Performance Tuning

-~ Look-Up T able

Perform 1-D linear interpolation of input values uzsing the specified table.
Extrapolation iz performed outside the table boundaries.

Wector of input values:
Jo100230]

Wector of output values:
[sarti01:0.02:3.0)

Cancel | Help | Lppli |

The interpolated values are plotted on the block icon.

/

Loaok-Up
Table

For more accuracy on widely spaced points, use a cubic spline interpolation in
the Look-Up Table (n-D) block, as shown below.

Perform n-dimenzional interpolated table lookup including index searches.
The table iz a zampled representation of a function in M variables.
Breakpoint sets relate the input values to positions in the table.

=3 |

Mumber of table dimensions: 1 j
First input [row] breakpoint set:

Jo100230]

Index search method: IBinary Search j

¥ Beqin index searches using previous indes results
I Use one [vector] input port instead of N ports
Table data:

[sarti01:0.02:3.0)

Interpolation method:

Extrapolation method: ILinear j

Action for out of range input: IWaming j

QK I Cancel | Help | Apply |

9-31

9 Optimizing the Model for Code Generation

9-32

Techniques available in Simulink include n-dimensional support for direct
lookup, linear interpolations in a table, cubic spline interpolations in a table,
and 1-D real polynomial evaluation.

The Look-Up Table (n-D) block supports flat interval lookup, linear
interpolation and cubic spline interpolation. Extrapolation for the Look-Up
Table (n-D) block can either be disabled (clipping) or enabled for linear or
spline extrapolations.

The icons for the Direct Look-Up Table (n-D) and Look-Up Table (n-D) blocks
change depending on the type of interpolation selected and the number of
dimensions in the table, as illustrated below.

1-0 T

E_.—<>

Direct Look-Up
Table (n-0)

20 T(u) 1-D T(W) 1-D T(W) 1-D T(W)

-~ L)L

Look-Up Flat Intenval Linear Cubic Spline
Table (n-07 Lookup Interpalation Interpolation

Py |
O(FI=5

Folynomial

Tables with Repeated Points

The Look-Up Table and Look-Up Table (2-D) blocks, shown below, support
linear interpolation with linear extrapolation. In these blocks, the row and
column parameters can have repeated points, allowing pure step behavior to be
mixed in with the linear interpolations. Note that this capability is not
supported by the Look-Up Table (n-D) block.

Look-Up Look-Up
Table Table (2-0)

Block Diagram Performance Tuning

Slowly vs. Rapidly Changing
Look-Up Table Block Inputs

You can optimize lookup table operations using the Look-Up Table (n-D) block
for efficiency if you know the input signal’s normal rate of change. Figure 9-10
shows the parameters for the Look-Up Table (n-D) block.

ear Interpolation

r— LookupMDlInterp [mask] [link]

Breakpoint sets relate the input values to positions in the table.

Perform n-dimenzional interpolated table lookup including index searches.
The table iz a zampled representation of a function in M variables.

=
F

Mumber of table dimensions: 1

First input [row] breakpoint set:

Jno.22.31]

Index search methad:
¥ Beqin index searches using previous indes results
I Use one [vector] input port instead of N ports
Table data:

Jig7.11]

Interpolation method: ILinear

Extrapolation method: INone - Clip

Action for out of range input: IWaming

Ll L 1

QK I Cancel | Help | Apply

Figure 9-10: Parameter Dialog for the Look-Up Table (n-D) Block

If you do not know the input signal’s normal rate of change in advance, it would
be better to choose the Binary Search option for the index search in the
Look-Up Table (n-D) block and the PreLook-Up Index Search block.

Index search methad:

[~ Bedin index searches using previous index results

Regardless of signal behavior, if the table’s breakpoints are evenly spaced, it is
best to select the Evenly Spaced Points option from the Look-Up Table (n-D)

block’s parameter dialog.

9-33

9 Optimizing the Model for Code Generation

9-34

Index search methad:

[~ Bedin index searches using previous index results

If the breakpoints are not evenly spaced, first decide which of the following best
describes the input signal behavior.

® Behavior 1: The signal stays in a given breakpoint interval from one time
step to the next. When the signal moves to a new interval, it tends to move
to an adjacent interval.

® Behavior 2: The signal has many discontinuities. It jumps around in the
table from one time step to the next, often moving three or more intervals per
time step.

Given behavior 1, the best optimization for a given lookup table is to use the
Linear search option and Begin index searches using previous index
results options, as shown below.

Index search methad: [{ERetmg

¥ Beqin index searches using previous indes results

Given behavior 2, the Begin index searches using previous index results
option does not necessarily improve performance. Choose the Binary Search
option, as shown below.

Index search methad:

[~ Bedin index searches using previous index results

The choice of an index search method can be more complicated for lookup table
operations of two or more dimensions with linear interpolation. In this case,
several signals are input to the table. Some inputs may have evenly spaced
points, while others may exhibit behavior 1 or behavior 2.

Here it may be best to use PreLook-Up Index Search blocks with different
search methods (evenly spaced, linear search or binary search) chosen
according to the input signal characteristics. The outputs of these search blocks

Block Diagram Performance Tuning

are then connected to an Interpolation (n-D) Using PreLook-Up Index Search
block, as shown in the block diagram below.

u
. 20T

FreLook-Up

Index Search 1 I olation (n-D)
" uzing PreLook-Up
‘yﬁi’

FreLook-Up
Index Search 2

You can configure each PreL.ook-Up Index Search block independently to use
the best search algorithm for the breakpoints and input time variation cases.

Multiple Tables with Common Inputs

The index search can be the most time consuming part of flat or linear
interpolation calculations. In large block diagrams, lookup table blocks often
have the same input values as other lookup table blocks. If this is the case in
your block diagram, you can obtain a large savings in computation time by
making the breakpoints common to all tables. This savings is obtained by using
one set of PreLoook-Up Index Search blocks to perform the searches once for all
tables, so that only the interpolation remains to be calculated. Figure 9-11 is
an example of a block diagram that can be optimized by this method.

[EER L]
Co—» 1)
In1 Out1
Table A
20 T
5
Out
-0 Ty Table B
In2 Out2

Table C

Figure 9-11: Before Optimization

9-35

9 Optimizing the Model for Code Generation

9-36

Assume that Table A’s breakpoints are the same as Table B’s first input
breakpoints, and that Table C’s breakpoints are the same as Table B’s second
input breakpoints.

A 50% reduction in index search time is obtained by pulling these common
breakpoints out into a pair of PreLook-Up Index Search blocks, and using

Interpolation (n-D) Using PreLook-Up Index Search blocks to perform the

interpolation. Figure 9-12 shows the optimized block diagram.

" A-0 Tikf)
thee > "o
In1 Out1
Index Search 1 Table A 2-0 Tihf)
- 3
L
- Out
” -0 TN Table B
by >
n Out2

Index Search 2 Table C

Figure 9-12: After Optimization

In Figure 9-12, the Look-Up Table (n-D) blocks have been replaced with
Interpolation (n-D) Using PreLook-Up blocks.The PreLook-Up Index Search
blocks have been added to perform the index searches separately from the
interpolations, in order to realize the savings in computation time.

In large controllers and simulations, it is not uncommon for hundreds of
multidimensional tables to rely on a dozen or so breakpoint sets. Using the
optimization technique shown in this example, you can greatly increase the
efficiency of your application.

Accumulators

Simulink recognizes the block diagram shown in Figure 9-13 as an
accumulator. An accumulator construct — comprising a Constant block, a Sum
block, and feedback through a Unit Delay block — is recognized anywhere
across a block diagram, or within subsystems at lower levels.

Block Diagram Performance Tuning

Constant

Unit Dalay

Figure 9-13: An Accumulator Algorithm

By using the Block reduction option, you can significantly optimize code
generated from an accumulator. Turn this option on in the Advanced pane of
the Simulink Simulation parameters dialog, as shown in Figure 9-14.

=1ox]
Solver Workspacel.-"Dl Diagnosticsl Advanced HeaI-TimeW’orkshopl
Model parameter configuration
¥ Inline parameters Eonfigure...l
Optimizations:)
Action
Elock reduction On ﬂ © On
Boolean logic sigmals 0ff
Conditional input branch On 0Off
Parametetr tinnline fn ;I
Model Yerification block contral: IUse local settings 'l
Production hardware characteristics: IMicroprocessor j
BitsPerChar 5 ﬂ Value:
RitaPerTnt 57 ¥ I
QK | Eancell Help | Apply |

Figure 9-14: Block Reduction Option

With the Block reduction option on, Simulink creates a synthesized block,
Sum_synth_accum. This synthesized block replaces the block diagram of
Figure 9-13, resulting in a simple increment calculation.

void Md1lOutputs(int_T tid)
{

/* UnadornAccum Block: <Root>/Sum_synth_accum */
rtB.Sum_synth_accum++;

9-37

9 Optimizing the Model for Code Generation

/* Outport Block: <Root>/0uttl */
rtY.Out1 = rtB.Sum_synth_accum;
}

With Block reduction turned off, the generated code reflects the block
diagram more literally, but less efficiently.

void MdlOutputs(int_T tid)

{

/* Expression for <Root>/Sum incorporates: */
[* Constant Block: <Root>/Constant */
/* UnitDelay Block: <Root>/Unit Delay */

/* Sum Block: <Root>/Sum */
rtB.Sum = 1.0 + rtDWork.Unit_Delay_ DSTATE;

/* Outport Block: <Root>/Outi */
rtY.Out1 = rtB.Sum;

Use of Data Types

In most processors, the use of integer data types can result in a significant
reduction in data storage requirements, as well as a large increase in the speed
of operation. You can achieve large performance gains on most processors by
identifying those portions of your block diagram that are really integer
calculations (such as accumulators), and implementing them with integer data

types.

Floating-point DSP targets are an obvious exception to this rule.

The accumulator from the previous example used 64-bit floating-point
calculations by default. The block diagram in Figure 9-14 implements the
accumulator with 16-bit integer operations.

9-38

Block Diagram Performance Tuning

Constant

Unit Dalay

Figure 9-15: Accumulator Implemented with 16-bit Integers

If the Saturate on integer overflow option of the Sum block is turned off, the
code generated from the integer implementation looks the same as code
generated from the floating-point block diagram. However, since
Sum_synth_accumis performing integer arithmetic internally, the accumulator
executes more efficiently.

Note that, by default, the Saturate on integer overflow option is on. This
option generates extra error-checking code from the integer implementation,
as in the following example.

void MdlOutputs(int_T tid)
{

/* UnadornAccum Block: <Root>/Sum_synth_accum */

{
int16_T tmpVar = rtB.Sum_synth_accum;

rtB.Sum_synth_accum = tmpVar + (1);
if ((tmpvar >= 0) && ((1) >= 0) && (rtB.Sum_synth_accum < 0)) {
rtB.Sum_synth_accum = MAX_int16_T;
} else if ((tmpVar < 0) &% ((1) < 0) &% (rtB.Sum_synth_accum >= 0)) {
rtB.Sum_synth_accum = MIN_int16_T;
}
}

/* Outport Block: <Root>/Outi1 */
rtY.Out1 = rtB.Sum_synth_accum;

The floating-point implementation would not have generated the saturation
error checks, which apply only to integers. When using integer data types,
consider whether or not you need to generate saturation checking code.

Figure 9-16 shows an efficient way to add reset capability to the accumulator.
When resetSig is greater than or equal to the threshold of the Switch block,
the Switch block passes the reset value (0) back into the accumulator.

9-39

9 Optimizing the Model for Code Generation

intl6(1) L (1)

Increment accumiial

intl6(0)

Reset\falue

-,

razetSig

Figure 9-16: Integer Accumulator with Reset via External Input

The size of the resultant code is minimal. The code uses no floating-point
operations.

void MdlOutputs(int_T tid)

/* local block i/o variables */
int16_T rtb_temp3;

/* UnitDelay Block: <Root>/accumState */
rtb_temp3 = rtDWork.accumState_ DSTATE;

/* Expression for <Root>/Sum incorporates: */
/* Constant Block: <Root>/Increment */

/* Sum Block: <Root>/Sum */
{
int16_T tmpvari = 0;
int16_T tmpVar2;
/* port 0 */
tmpvart = (1);
/* port 1 */
tmpVvar2 = tmpvVari + rtb_temp3;
if ((tmpvari >= 0) && (rtb_temp3 >= 0) && (tmpVar2 < 0)) {
tmpVvar2 = MAX_int16_T;
} else if ((tmpVari < 0) && (rtb_temp3 < 0) && (tmpVar2 >= 0)) {
tmpVvar2 = MIN_int16_T;
}

rtb_temp3 = tmpvar2;
}

/* Outport Block: <Root>/accumval */
rtY.accumVal = rtb_temp3;

9-40

Block Diagram Performance Tuning

/* Expression for <Root>/Switch incorporates: */
/* Inport Block: <Root>/resetSig */
/* Constant Block: <Root>/ResetValue */

/* Switch Block: <Root>/Switch */
if (rtU.resetSig) {

rtB.Switch = (0);
} else {

rtB.Switch = rtb_temp3;

}
}
In this example, it would be easy to use an input to the system as the reset

value, rather than a constant.

Generating Pure Integer Code

The Real-Time Workshop Embedded Coder target provides the Integer code
only option to ensure that generated code contains no floating-point data or
operations. When this option is selected, an error is raised if any noninteger
data or expressions are encountered during compilation of the model. The error
message reports the offending blocks and parameters.

If pure integer code generation is important to your design, you should consider
using the Real-Time Workshop Embedded Coder target (or a target of your
own, based on the Real-Time Workshop Embedded Coder target).

To generate pure integer code, select ERT code generation options (1) from
the Category menu in the Real-Time Workshop pane. Then select the Integer
code only option, as shown below.

-} Simulation Parameters: untitled o] 5

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Category: I ERT code generation options (1] j Biuild |

Options
[~ MAT-file lngging

¥ Integer code only

¥ Initialize internal data

¥ Initialize external |/0 data

¥ Temminate function required
¥ Single output/update function

[Inzert block descriptions in code

QK | Eancell Help | Apply |

941

9 Optimizing the Model for Code Generation

9-42

The Real-Time Workshop Embedded Coder target offers many other
optimizations. See the Real-Time Workshop Embedded Coder documentation
for further information.

Data Type Optimizations with Fixed-Point Blockset
and Stateflow

The Fixed-Point Blockset (a separate product) is designed to deliver the highest
levels of performance for noninteger algorithms on processors lacking
floating-point hardware. The Fixed-Point Blockset’s code generation in
Real-Time Workshop implements calculations using a processor’s integer
operations. The code generation strategy maps the integer value set to a range
of expected real world values to achieve the high efficiency.

Finite-state machine or flowchart constructs can often represent decision logic
(or mode logic) efficiently. Stateflow (a separate product) provides these
capabilities. Stateflow, which is fully integrated into Simulink, supports
integer data-typed code generation.

Stateflow Optimizations

Stateflow Optimizations

If your model contains Stateflow blocks, select the Use Strong Data Typing
with Simulink I/O check box (on the Chart Properties dialog box) on a

chart-by-chart basis.

Mame: Chart

Simulink Subsystem: untitled/Chart

Parent: [maching] untitled

Update method: ITriggered ar Inherited vl Sample Time: I -1

[~ Enable C-like bit operations

Apply to all charts in machine now I

[~ Mo Code Generation for Custom Targets

I~ Export Chart Level Graphical Functions [Make Global]
[Use Strong Data Typing with Simulink 1/0

[~ Execute [enter] Chart At Initialization

Debugger breakpoint: [~ Onchartenty Editor: [~ Locked

Description:

Document Link:

ID# 21 0K | cancel | Hep | appl |

=0l

See the Stateflow User’s Guide for more information about the Chart

Properties dialog box.

9-43

9 Optimizing the Model for Code Generation

9-44

Simulation Parameters

Options on each pane of the Simulation Parameters dialog box affect the
generated code.

Advanced Pane

® Turn on the Signal storage reuse option. The directs Real-Time Workshop
to store signals in reusable memory locations. It also enables the Local block
outputs option (see “General Code Generation Options” on page 9-45).

Disabling Signal storage reuse makes all block outputs global and unique,
which in many cases significantly increases RAM and ROM usage.

=1ox]
Solverl Workspacel.-"Dl Diagnosticsl Advanced HeaI-TimeW’orkshopl
Model parameter configuration
™ Inline parameters Eonfigure...l
Optimizations:)
Action
Elock reduction On = IS
. . + On
Boolean logic sigmals On
Conditional input branch On 0Off
Parametetr tinnline fn ¥
Model Yerification block contral: IUse local settings 'l
Production hardware characteristics: IMicroprocessor j
BitsPerChar 5 ﬂ Value:
RitaPerTnt 57 ¥ I
QK | Eancell Help | Apply |

Enable strict Boolean type checking by selecting the Boolean logic signals
option.

Selecting this check box is recommended. Generated code will require less
memory, because a Boolean signal typically requires one byte of storage
while a double signal requires eight bytes of storage.

Select the Inline parameters check box. Inlining parameters reduces global
RAM usage, since parameters are not declared in the global parameters
structure. Note that you can override the inlining of individual parameters
by using the Model Parameter Configuration dialog box.

Simulation Parameters

¢ Consider using the Parameter pooling option if you have multiple block
parameters referring to workspace locations that are separately defined but
structurally identical. See “Parameter Pooling Option” on page 2-30 for
further information.

General Code Generation Options

To access these options, select General code generation options or General
code generation options (cont.) from the Category menu on the Real-Time
Workshop pane.

¢ Set an appropriate Loop rolling threshold. The loop rolling threshold
determines when a wide signal should be wrapped into a for loop and when
it should be generated as a separate statement for each element of the signal
See “Loop Rolling Threshold” on page 2-8 for details on loop rolling.

¢ Select the Inline invariant signals option. Real-Time Workshop will not
generate code for blocks with a constant (invariant) sample time.

® Select the Local block outputs option. Block signals will be declared locally
in functions instead of being declared globally (when possible). You must
turn on the Signal storage reuse option in the Advanced pane to enable the
Local block outputs check box.

® Select the Expression folding option, discussed in “Expression Folding” on
page 9-3.

¢ Select the Buffer reuse option. This option can reduce stack size. See “Buffer
Reuse” on page 2-12.

9-45

9 Optimizing the Model for Code Generation

Compiler Options

If you do not require double precision for your application, define real T as
float in your template make file, or you can simply specify -DREAL_T=float
after make_rtw in the Make command field.

Turn on the optimizations for the compiler (e.g., -02 for gcc, -0t for Microsoft
Visual C).

9-46

The S-Function Target

S-functions are an important class of target for which Real-Time Workshop can generate code. The
ability to encapsulate a subsystem into an S-function allows you to increase its execution efficiency
and shield its internal logic from inspection and modification. Here we describe the properties of
S-function targets and demonstrate how to generate them. For further details on the structure of
S-functions, see Writing S-Functions in the Simulink documentation.

Introduction (p. 10-2) Overview of the S-function target and its applications

Creating an S-Function Block from a How to extract a subsystem from a model and use it to

Subsystem (p. 10-3) generate a reusable S-function component; a step-by-step
demonstration

Tunable Parameters in Generated How to declare tunable parameters in generated

S-Functions (p. 10-9) S-functions and how they differ from those in other
targets

Automated S-Function Generation Step-by-step instructions for automatically generating an

(p. 10-11) S-function from a subsystem

Restrictions (p. 10-15) Limitations constraining the use of the S-function target

Unsupported Blocks (p. 10-17) Blocks not supported by the S-function target

System Target File and Template Control files used by the S-function target

Makefiles (p. 10-18)

1 0 The S-Function Target

10-2

Introduction

Using the S-function target, you can build an S-function component and use it
as an S-Function block in another model. The S-function code format used by
the S-function target generates code that conforms to the Simulink C MEX
S-function application programming interface (API). Applications of this
format include:

¢ Conversion of a model to a component. You can generate an S-Function block
for a model, m1. Then, you can place the generated S-Function block in
another model, m2. Regenerating code for m2 does not require regenerating
code for m1.

® Conversion of a subsystem to a component. By extracting a subsystem to a
separate model, and generating an S-Function block from that model, you
can create a reusable component from the subsystem. See “Creating an
S-Function Block from a Subsystem” on page 10-3 for an example of this
procedure.

® Speeding up simulation. In many cases, an S-function generated from a
model performs more efficiently than the original model.

® Code reuse. You can incorporate multiple instances of one model inside
another without replicating the code for each instance. Each instance will
continue to maintain its own unique data.

The S-function target generates noninlined S-functions. You can generate an
executable from a model that contains generated S-functions by using the
generic real-time or real-time malloc targets. You cannot use the Real-Time
Workshop Embedded Coder target for this purpose, since it requires inlined
S-functions.

You can place a generated S-Function block into another model from which you
can generate another S-function format. This allows any level of nested
S-functions.

Intellectual Property Protection

In addition to the technical applications of the S-function target listed above,
you can use the S-function target to protect your designs and algorithms. By
generating an S-function from a proprietary model or algorithm, you can share
the model’s functionality without providing the source code. You need only
provide the binary .d11 or MEX-file object to users.

Creating an S-Function Block from a Subsystem

Creating an S-Function Block from a Subsystem

This section demonstrates how to extract a subsystem from a model and
generate a reusable S-function component from it.

Figure 10-1 illustrates SourceModel, a simple model that inputs signals to a
subsystem. Figure 10-2 illustrates the subsystem, SourceSubsys. The signals,
which have different widths and sample times, are:

® A Step block with sample time 1
e A Sine Wave block with sample time 0.5
® A Constant block whose value is the vector [-2 3]

L[
Step SampTime =1
2
HferFon Out1

Scope

i

Sine SampTime =05

z offsets

Const [2 3]

SourceSubsys

Figure 10-1: SourceModel

1

Dizcrete
Transfer Fen 2]

Figure 10-2: SourceSubsys

Our objective is to extract SourceSubsys from the model and build an
S-Function block from it, using the S-function target. We want the S-Function
block to perform identically to the subsystem from which it was generated.

Note that in this model, SourceSubsys inherits sample times and signal widths
from its input signals. However, S-function blocks created from a model using
the S-function target will have all signal attributes (such as signal widths or

10-3

1 0 The S-Function Target

10-4

sample times) hardwired. (The sole exception to this rule concerns samples
times, as described in “Sample Time Propagation in Generated S-Functions” on
page 10-8.)

In this example, we want the S-Function block to retain the properties of
SourceSubsys as it exists in SourceModel. Therefore, before building the
subsystem as a separate S-function component, the inport sample times and
widths must be set explicitly. In addition, the solver parameters of the
S-function component must be the same as those of the original model. This
ensures that the generated S-function component will operate identically to the
original subsystem (see “Choice of Solver Type” on page 10-8 for an exception
to this rule).

To build SourceSubsys as an S-function component:
1 Create a new model and copy/paste SourceSubsys into the empty window.

2 Set the signal widths and sample times of inports inside SourceSubsys such
that they match those of the signals in the original model. Inport 1, Filter,
has a width of 1 and a sample time of 1. Inport 2, Xferfcn, has a width of 1
and a sample time of 0.5. Inport 3, offsets, has a width of 2 and a sample
time of 0.5.

3 The generated S-Function block should have three inports and one outport.
Connect inports and an outport to SourceSubsys, as shown below.

Fitter
In1
HferFon outt
InZ Out1
affsets

SourceSubsys

Note that the correct signal widths and sample times propagate to these
ports.

Creating an S-Function Block from a Subsystem

Set the solver type, mode, and other solver parameters such that they are
identical to those of the source model.

Save the new model.

Open the Simulation Parameters dialog and click the Real-Time
Workshop tab. On the Real-Time-Workshop pane, select Target
configuration from the Category menu.

Click the Browse button to open the System Target Browser. Select the
S-function target in the System Target Browser, and click OK. The
Real-Time-Workshop pane parameters should appear as below.

+ Simulation Parameters: Subsys_Sfunc [()]

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Category: I Target configuration j Biuild |
Configuration

System target file: I Thwsfor.te: Browse___l

Template makefile: I thwsfor_default_trf

Make command: I make e

[~ Generate code only Stateflow options... |

QK | Eancell Help | Aol |

10-5

1 0 The S-Function Target

8 Select RTW S-function code generation options from the Category menu.
Make sure that Create New Model is selected.

+ Simulation Parameters: Subsys_Sfunc [()]

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Category: I RTw S-function code generation options j Build |

Options
¥ Create New Maodel

¥ UseValue for Tunable Parameters

QK | Eancell Help | Aol |

When this option is selected, the build process creates a new model after it
builds the S-function component. The new model contains an S-Function
block, linked to the S-function component.

9 Click Apply if necessary.
10 Click Build.

11 Real-Time Workshop builds the S-function component in the working
directory. After the build, a new model window displays.

10-6

Creating an S-Function Block from a Subsystem

Zluntitled * =] E3

File Edit ¥iew Simulation Format Tools Help

D|D”H§|%E|DQ|H|> IINormaI

RTW S-Function

Flead|100% 7

12 You can now copy the Real-Time Workshop S-Function block from the new
model and use it in other models or in a library. Figure 10-3 shows the
S-Function block plugged in to the original model. Given identical input
signals, the S-Function block will perform identically to the original
subsystem.

Z1SourceModelPlugln =] E3
File Edit “iew Simulation Format Tools
Help

MEEEE R

RTW S-Function

Const [2 3]

1[100% [Y

Figure 10-3: Generated S-Function Plugged into SourceModel

Note that the speed at which the S-Function block executes is typically faster
than the original model. This difference in speed is more pronounced for larger

10-7

1 0 The S-Function Target

10-8

and more complicated models. By using generated S-functions, you can
increase the efficiency of your modeling process.

Sample Time Propagation in Generated S-Functions

Note that sample time propagation for the S-function code format is slightly
different from the other code formats. A generated S-Function block will
inherit its sample time from the model in which it is placed if (and only if) no
blocks in the original model specify their sample times.

Choice of Solver Type

If the model containing the subsystem from which you generate an S-function
uses a variable step solver, the generated S-function will contain zero crossing
functions. Therefore, the generated S-function will work properly in models
with either variable step or fixed step solvers.

On the other hand, if the model containing the subsystem from which you
generate an S-function uses a fixed step solver, the generated S-function
contains no zero crossing functions. In this case, you can use the generated
S-function only within models that use fixed-step solvers.

Tunable Parameters in Generated S-Functions

Tunable Parameters in Generated S-Functions

You can utilize tunable parameters in generated S-functions in two ways:

¢ Use the Generate S-function feature (see “Automated S-Function
Generation” on page 10-11).

or

¢ Use the Model Parameter Configuration dialog (see “Parameters: Storage,
Interfacing, and Tuning” on page 5-2) to declare desired block parameters
tunable.

Block parameters that are declared tunable with the auto storage class in
the source model become tunable parameters of the generated S-function.

Note that these parameters do not become part of a generated rtP parameter
data structure, as they would in code generated from other targets. Instead,
the generated code accesses these parameters via MEX API calls such as
mxGetPr or mxGetData. Your code should access these parameters in the
same way.

For further information on MEX API calls, see Writing S-Functions and
“External Interfaces/API” in the MATLAB online documentation.

S-Function blocks created via the S-function target are automatically masked.
The mask displays each tunable parameter in an edit field. By default, the edit
field displays the parameter by variable name, as in the following example.

Block Parameters: RT'w S-Function

— 5-Function [mask)

Include a Real-Time “Workshop generated S-Function

Generated 5-Function Mame [model_sf]:

ISubsys_Sfunc:_sf
e
3

QK I Cancel | Help | Lppli |

You can choose to display the value of the parameter rather than its variable
name. To do this, select Use Value for Tunable Parameters in the Options
section.

10-9

1 0 The S-Function Target

+ Simulation Parameters: Subsys_Sfunc [()]
Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop
Category: I RTw S-function code generation options j Build |

Options
¥ Create New Maodel

¥ UseValue for Tunable Parameters

QK | Eancell Help | Aol |

When this option is chosen, the value of the variable (at code generation time)
is displayed in the edit field, as in the following example.

— 5-Function [mask)

Include a Real-Time “Workshop generated S-Function

Generated 5-Function Mame [model_sf]:

IS ubsys SfunchOTwithvarmame_sf
e
Jiro

QK I Cancel Help Lppli

10-10

Automated S-Function Generation

Automated S-Function Generation

The Generate S-function feature automates the process of generating an
S-function from a subsystem. In addition, the Generate S-function feature
presents a display of parameters used within the subsystem, and lets you
declare selected parameters tunable.

As an example, consider SourceSubsys, the subsystem illustrated in

Figure 10-2. Our objective is to automatically extract SourceSubsys from the
model and build an S-Function block from it, as in the previous example. In
addition, we want to set the gain factor of the Gain block within SourceSubsys
to the workspace variable K (as illustrated below) and declare K as a tunable
parameter.

Block Parameters: Gain

—Gain

Element-wize gain [y = K.*u] or matriz gain [= Ku or p = uk),

Mulipicaton: [FSTMMNN— |

=
F

¥ Saturate on integer overflow

QK I Cancel | Help | Lppli |

To auto-generate an S-function from SourceSubsys with tunable parameter K:
1 Click on the subsystem to select it.

2 Select Generate S-function from the Real-Time Workshop submenu of the
Tools menu. This menu item is enabled when a subsystem is selected in the
current model.

Alternatively, you can choose Generate S-function from the Real-Time
Workshop submenu of the subsystem block's context menu.

3 The Generate S-function window is diplayed (see Figure 10-4). This
window shows all variables (or data objects) that are referenced as block
parameters in the subsystem, and lets you declare them as tunable.

The upper pane of the window displays three columns:

10-11

1 0 The S-Function Target

= Variable name: name of the parameter.

= Class: If the parameter is a workspace variable, its data type is shown. I
the parameter is a data object, its and class is shown

= Tunable: Lets you select tunable parameters. To declare a parameter

tunable, select the check box. In Figure 10-4, the parameter K is declared
tunable.

When you select a parameter in the upper pane, the lower pane shows all

the blocks that reference the parameter, and the parent system of each such
block.

<} Generate S-function for Subsystem: SourceSubsys =] 3
~Picktunable parameters

Wariahle Name Tunable

double

~Blocks using selected variable: '

Block Farent
0 Gain SourcebModel’SourceSubsys

™ Use Embedded Coder Build Cancel Help |

Status
’7 Select tunahle parameters and click Build ‘

Figure 10-4: The Generate S-Function Window

4 Ifyou have licensed and installed the Real-Time Workshop Embedded
Coder, the Use Embedded Coder check box is available, as in Figure 10-4.
Otherwise, it is grayed out. When Use Embedded Coder is selected, the
build process generates a wrapper S-Function via the Real-Time Workshop
Embedded Coder. See the Real-Time Workshop Embedded Coder
documentation for further information.

10-12

Automated S-Function Generation

5 After selecting tunable parameters, click the Build button. This initiates
code generation and compilation of the S-function, using the S-function
target. The Create New Model option is automatically enabled.

6 The build process displays status messages in the MATLAB command
window. When the build completes, the tunable parameters window closes,
and a new untitled model window opens.

Z1GeneratedModel M=l E3

File Edit ¥iew Simulation Format Tools Help

D& e o mE| > = [om 4|

Filter

XferFcn Out1

SourceSubsys_hlk

Ready R0 i

7 The model window contains an S-Function block, subsys _blk, where subsys
is the name of the subsystem from which the block was generated.

The generated S-function component, subsys, is stored in the working
directory. The generated source code for the S-function is written to a build
directory, subsys _sfcn_rtw. Additionally a stub file, subsys_sf.c, is
written to the working directory. This file simply contains an include
directive that you can use to interface other C code to the generated code.

Note that if the Use Embedded Coder option was selected, the build
directory is named subsys_ert_rtw.

8 Note that the untitled generated model does not persist, unless you save it
via the File menu.

10-13

1 0 The S-Function Target

9 Note that the generated S-Function block has inports and outports whose
widths and sample times correspond to those of the original model.

The following code fragment, from the md10utputs routine of the generated
S-function code (in SourceSubsys_sf.c), illustrates how the tunable variable K
is referenced via calls to the MEX API.

static void mdlOutputs(SimStruct *S, int_T tid)

/* Expression for <Root>/Outi incorporates: */
/* Gain Block: <S1>/Gain */
/* Sum Block: <S1>/Sum */
/* Inport Block: <Root>/offsets */

/* Outport Block: <Root>/Outl */

((real_T *)ssGetOutputPortSignal(S,0))[0] = ((*(real_T *)(mxGetData(K(S)))) *
(rtb_Product + *(((real_T**)ssGetInputPortSignalPtrs(S, 2))[0])));

((real_T *)ssGetOutputPortSignal(S,0))[1] = ((*(real_T *)(mxGetData(K(S)))) *
(rtb_Product + *(((real_T**)ssGetInputPortSignalPtrs(S, 2))[1])));

Note In automatic S-function generation, the Use Value for Tunable
Parameters option is always set to its default value (off).

10-14

Restrictions

Restrictions

Limitations on Use of Goto and From Blocks

When using the S-function target, Real-Time Workshop restricts I/0 to
correspond to the root model's Inport and Outport blocks (or the Inport and
Outport blocks of the Subsystem block from which the S-function target was
generated). No code is generated for Goto or From blocks.

To work around this restriction, you should create your model and subsystem
with the required Inport and Outport blocks, instead of using Goto and From
blocks to pass data between the root model and subsystem. In the model that
incorporates the generated S-function, you would then add needed Goto and
From blocks.

As an example of this restriction, consider the model shown in Figure 10-5 and
its subsystem, Subsystem1, shown in Figure 10-6. The Goto block in
Subsystem1, which has global visibility, passes its input to the From block in
the root model.

ED— Stunction Dutput w3240 Stunetion Dutput

SubSystem Fram1 To Wiokspace

Figure 10-5: Root Model With From Block

12 double double SfunectionOutput

Constant Integratar Goto

Figure 10-6: Subsystem1 With Goto Block

If SubSystem1 is built as an S-Function using the S-Function target, and
plugged into the original model (as shown in Figure 10-7), a warning is issued
when the model is run, because the generated S-function does not implement
the Goto block.

10-15

1 0 The S-Function Target

‘[tionOutput] - tionOutput

From1 To Wodkepace!
RTW S-Function

Figure 10-7: Generated S-Function Replaces Subsystem1

A workaround is shown in Figure 10-8. A conventional Outport is used in
Subsystem1.When the generated S-function is plugged into the root model, its
output is connected to the To Workspace block.

e

B

Constant Integratar

RTW S-Function To Wotkspace1

Figure 10-8: Use of Outport in Generated S-Function

Other Restrictions

¢ Hand-written S-functions without corresponding TLC files must contain
exception-free code. For more information on exception-free code, refer to
“Exception-Free Code” in Writing S-Functions.

¢ If you modify the source model that generated an S-Function block,
Real-Time Workshop does not automatically rebuild models containing the
generated S-Function block.

10-16

Unsupported Blocks

Unsupported Blocks

The S-function format does not support the following built-in blocks:
* MATLAB Fcn Block
¢ S-Function blocks containing any of the following:

= M-file S-functions

= Fortran S-functions

= C MEX S-functions that call into MATLAB
® Scope block

® To Workspace block

10-17

1 0 The S-Function Target

System Target File and Template Makefiles

The following system target file and template makefiles are provided for use
with the S-function target.

System Target File

® rtwsfcn.tlc

Template Makefiles

® rtwsfcn_bc.tmf — Borland C

® rtwsfen_lcc.tmf — LCC compiler
e rtwsfc_unix.tmf — UNIX host

® rtwsfen_ve.tmf — Visual C

* rtwsfcen_watc.tmf — Watcom C

10-18

Real-Time Workshop
Rapid Simulation Target

The rapid simulation (rsim) target provides a fast and flexible platform on your own host computer
for testing code generated for models, tuning parameters, and varying inputs to compile statistics
describing the behavior of your model across a range of initial conditions. In this chapter we discuss
the following topics:

Introduction (p. 11-2) Overview of the Rapid Simulation (rsim) target, its
applications, and dependencies on Simulink

Building for the Rapid Simulation Generating, building and running an rsim executable
Target (p. 11-5)

171 realTime Workshop Rapid Simulation Target

Introduction

11-2

The Real-Time Workshop rapid simulation target (rsim) consists of a set of
target files for nonreal-time execution on your host computer. You can use rsim
to generate fast, stand-alone simulations that allow batch parameter tuning
and loading of new simulation data (signals) from a standard MATLAB
MAT-file without needing to recompile your model.

The C code generated from Real-Time Workshop is highly optimized to provide
fast execution of Simulink models of hybrid, dynamic systems. This includes
models using variable step solvers and zero crossing detection.

The speed of the generated code makes the rsim target ideal for batch or Monte
Carlo simulation. The generated executable (model. exe) created using the
rsim target has the necessary run-time interface to read and write data to
standard MATLAB MAT-files. Using this interface model. exe can reads new
signals and parameters from input MAT-files at the start of the simulation and
write the simulation results to output MAT-files.

Having built an rsim executable with Real-Time Workshop and an appropriate
C compiler for your host computer, you can perform any combination of the
following by using command line options. Without recompiling, the rapid
simulation target allows you to:

® Specify a new file(s) that provides input signals for From File blocks

¢ Specify a new file that provides input signals with any Simulink data type
(double, float,int32,uint32,int16,uint16, int8, uint8, and complex data
types) by using the From Workspace block

® Replace the entire block diagram parameter vector and run a simulation

® Specify a new stop time for ending the stand-alone simulation

® Specify a new name of the MAT-file used to save model output data

® Specify name(s) of the MAT-files used to save data connected to To File
blocks

You can run these options:

® Directly from your operating system command line (for example, DOS box or
UNIX shell) or

¢ By using the bang (!) command with a command string at the MATLAB
prompt

Introduction

Therefore, you can easily write simple scripts that will run a set of simulations
in sequence while using new data sets. These scripts can be written to provide
unique filenames for both input parameters and input signals, as well as
output filenames for the entire model or for To File blocks.

The rsim target can be configured to either access all solvers available with
Simulink (which is the default configuration) or use only the fixed step solvers
packaged with Real-Time Workshop.

In the default configuration, the standalone executable (model. exe) created by
the rsim target links with the Simulink solver module (a shared library) if the
model uses a variable-step solver. When model. exe uses the Simulink solver
module, running model . exe will check out a Simulink license (see details
below). In such cases, model. exe requires read access to installed location of
MATLAB and Simulink in order to locate the 1icense.dat file and the shared
libraries.

Licensing Protocols for Simulink Solvers in
Executables

The Rapid Simulation target supports variable step solvers by linking the
generated code with the Simulink solver module (a shared library). When this
rsim executable is run, it accesses proprietary Simulink variable step solver
technology. In order to do so, the executable needs to check out a Simulink
license for the duration of its execution.

Rapid Simulation executables that do not use Simulink solver module (for
example, rsim executable built for a fixed-step model using the Real-Time
Workshop fixed-step solvers) do not require any license when they run.

Note The default setting of auto for the Solver selection option in the rsim
code generation options page configures rsim to use the Simulink solver
module only when needed (i.e., when the model uses a variable step solver).

The rsim executable will look in the default locations for the license file

e Unix: matlabroot/etc/license.dat
e PC: matlabroot/bin/win32/license.dat,

11-3

171 realTime Workshop Rapid Simulation Target

114

where matlabroot is the one use when building the rsim executable. If the rsim
executable is unable to locate the license file (this may happen, for example,

if you run this executable on another machine, where matlabroot is no longer
valid), it will print the following error message and exit:

Error checking out SIMULINK license.

Cannot find license file

The license files (or server network addresses) attempted are
listed below. Use LM_LICENSE_FILE to use a different license
file, or contact your software provider for a license file.
Feature: SIMULINK

Filename: /apps/matlab/etc/license.dat

License path: /abbs/matlab/etc/license.dat

FLEX1m error: -1,359. System Error: 2 "No such file or directory"
For further information, refer to the FLEX1m End User Manual,
available at "www.globetrotter.com".

Error: Unable to checkout Simulink license

Error terminating RSIM Engine: License check failed

Note You can point the rsim executable to a different license file by setting
the environment variable LM_LICENSE_FILE. The location pointed to by that
variable will override the default location compiled into the rsim executable.

If the rsim executable is unable to check out a Simulink license (this would
happen, for example, if all Simulink licenses are currently checked out), or has
other errors when checking out a Simulink license it will display a detailed
error message (similar to the one above) returned by the FLEX1m API and exit.

Building for the Rapid Simulation Target

Building for the Rapid Simulation Target

To generate and build an rsim executable, press the Browse button on the
Real-Time Workshop pane of the Simulation Parameters dialog box, and
select the rapid simulation target from the System Target File Browser. This
picture shows the dialog box settings for the rapid simulation target.

#|Simulation Parameters: {14 HE B3
Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop
Categony: [Target configuration =] mud | Press the Browse button and select the rapid
simulation target from the System Target File
Configuration

Browser. This automatically selects the correct

System target fle: [ram g . ¥
s s settings for the system target file, the template

Template maKEfle: | rsim_defaui_ni makefile, and the make command
))

Make command:

I make_rbw
[~ Generate code only Stateflow options... |
QK | Cancel | Help | Apply |

Figure 11-1: Specifying Target and Make Files for rsim

After specifying system target and make files as noted above, select any desired
Workspace I/0 settings, and press Build. Real-Time Workshop will
automatically generate C code and build the executable for your host machine
using your host machine C compiler. See “Choosing and Configuring Your
Compiler” on page 2-52 and “Template Makefiles and Make Options” on

page 2-55 for additional information on compilers that are compatible with
Simulink and Real-Time Workshop. The picture below shows rsim-specific code
generation options that allow you to avoid using the Simulink solver module

11-5

171 realTime Workshop Rapid Simulation Target

11-6

(i.e., use only the fixed step solvers packaged with Real-Time Workshop) and
enable the rsim executable to communicate with Simulink via external mode.

~) Simulation Parameters: f14 i = o]

Solverl Workspacel.-"Dl Diagnosticsl Advancedl Feal-Time Workshop

Categor:[RSIM code generaton options I T Choose whether to generate code for a fixed-step
Tt L or a variable-step solverwith this popup menu.
Solver selsction: [auto j" The auto option invokes the Simulimk solver

WL modem module only when the model requires it.
\ Use AT fived-step solvers

[T~ Select this checkbox to create an rsim executable
that communicates with Simulink via external mode

QK | Eancell Help | Apply |

Note Rapid Simulation executables created without using the Simulink
solver module can be transferred and run on computers that do not have
MATLAB installed. When running an rsim executable on such a machine, it is
necessary to have the following dlls in your working directory: 1ibmx.d11,
libut.d1l, and libmat.d1l. These dlls are required for the rsim executable to
write and read data from a .mat file. This deployment option is not available
for rsim executables that rely upon the Simulink solver module.

Running a Rapid Simulation

The rapid simulation target lets you run a simulation similar to the generic
real-time (GRT) target provided by Real-Time Workshop. This simulation does
not use timer interrupts, and therefore is a nonreal-time simulation
environment. The difference between GRT and rsim simulations is that

® rsim supports variable step solvers, and

* rsim allows you to change parameter values or input signals at the start of a
simulation without the need to generate code or recompile.

Building for the Rapid Simulation Target

The GRT target, on the other hand, is a starting point for targeting a new
processor.

A single build of your model can be used to study effects from varying
parameters or input signals. Command line arguments provide the necessary
mechanism to specify new data for your simulation. This table lists all
available command line options.

Table 11-1: rsim Command Line Options

Command Line Option Description

model -f old.mat=new.mat Read From File block input signal data from
a replacement MAT-file.

model -o newlogfile.mat Write MAT-file logging data to a file named
newlogfile.mat.

model -p filename.mat Read a new (replacement) parameter vector
from a file named filename.mat.

model -tf <stoptime> Run the simulation until the time value
<stoptime> is reached.

model -t old.mat=new.mat The original model specified saving signals
to the output file 01d.mat. For this run use
the file new.mat for saving signal data.

model -v Run in verbose mode.

model -h Display a help message listing options.

Note On Solaris platforms, to run the rsim executable created for a model
that uses variable step solvers in a seperate shell, the LD_LIBRARY_PATH
environment variable is needed to indicate the path to the MATLAB
installation directory, as follows:

% setenv LD_LIBRARY_PATH /apps/matlab/bin/s0l2:$LD_LIBRARY_PATH

11-7

171 realTime Workshop Rapid Simulation Target

11-8

Obtaining the Parameter Structure from Your Model

To obtain a parameter structure for the current model settings you may use the
rsimgetrtp function, with the following syntax:

rtP = rsimgetrtp(model', options)

The rtP structure is designed to be used with the Rapid Simulation target.
Getting it via rsimgetrtp forces an update diagram action. In addition to the
current model tunable block parameter settings, the rtP structure contains a
structural checksum. This checksum is used to ensure that the model structure
hasn’t changed since the rsim executable was generated.

Options to rsimgetrtp are passed as parameter-value pairs. Currently there is
one option, AddTunableParamInfo, which has two states, on and off:

rtP = rsimgetrtp(model', "AddTunableParamInfo','on')
rtP = rsimgetrtp(model', "AddTunableParamInfo','on')

The AddTunableParamInfo option causes Real-Time Workshop to generate
code that extract tunable parameter information from your model and places it
in the return argument (rtP). This information gives you a mapping between
the parameter structure and the tunable parameters.

To use the AddTunableParamInfo option, you must have selected the Inline
Parameters checkbox in the Advanced pane of the Simulation Parameters
dialog box. Exercising this option also creates, then deletes a model.rtw file in
your current working directory.

Tunable Fixed-Point parameters are reported according to their stored value.
For example, an sfix(16) parameter value of 1.4 with a scaling of 2~ -8 will
have a value of 358 as an int16.

Example 1. Create an rsim executable and pass a different parameter structure:

1 Set the Real-Time Workshop target configuration to Rapid Simulation
Target using the Target File Browser

2 Create an rsim executable for the model by clicking the Build button or by
typing rtwbuild('model").
3 Modify parameters in your model and save the rtP structure:

rtP = rsimgetrtp('model")
save myrtp.mat rtP

Building for the Rapid Simulation Target

4 Run the generate executable with the new parameter set:

Imodel -p myrtp.mat

5 Load the results in to Matlab

load model .mat

Example 2. Create an rtP with the tunable parameter mapping information:

1 Create rtP with the tunable parameter information:

rtP = rsimgetrtp('model', 'AddTunableParamInfo','on')

2 The rtP structure contains:

modelChecksum: 1x4 vector that encodes the structure of the model
parameters: A structure of the tunable parameters in the model

3 The parameters structure contains the following member fields:

dataTypeName: The data type name, e.g., 'double’
dataTypeld: Internal data type identifier for use by Real-Time Workshop
complex: 0 ifreal, 1 if complex

Specifying a New Signal Data File for a From File Block

To understand how to specify new signal data for a From File block, create a
working directory and connect to that directory. Open the model rsimtfdemo

by typing
rsimtfdemo

at the MATLAB prompt. Type
w = 100;
zeta = 0.5;

to set parameters. rsimtfdemo requires a data file, rsim_tfdata.mat. Make a
local copy of matlabroot/toolbox/rtw/rtwdemos/rsim_tfdata.mat in your
working directory.

Be sure to specify rsim. t1lc as the system target file and rsim_default_ tmf as
the template makefile. Then press the Build button on the Real-Time
Workshop pane to create the rsim executable.

11-9

171 realTime Workshop Rapid Simulation Target

11-10

Irsimtfdemo
load rsimtfdemo
plot(rt_yout)

The resulting plot shows simulation results using the default input data.

EFigule Mo. 1 =] B3
File Edit Toolz ‘Window Help

DEEd&E A A/, 20

14

0] 200 400 GO0 200 1000 1200

Replacing Input Signal Data. New data for a From File block can be placed in a
standard MATLAB MAT-file. As in Simulink, the From File block data must
be stored in a matrix with the first row containing the time vector while
subsequent rows contain u vectors as input signals. After generating and
compiling your code, you can type the model name rsimtfdemo at a DOS
prompt to run the simulation. In this case, the file rsim_tfdata.mat provides
the input data for your simulation.

For the next simulation, create a new data file called newfrom.mat and use this
to replace the original file (rsim_tfdat.mat) and run an rsim simulation with
this new data. This is done by typing

t=[0:.001:17];

u=sin(100*t.*t);
tu=[t;ul;

Building for the Rapid Simulation Target

save newfrom.mat tu;
!rsimtfdemo -f rsim_tfdata.mat=newfrom.mat

at the MATLAB prompt. Now you can load the data and plot the new results
by typing

load rsimtfdemo
plot(rt_yout)

This picture shows the resulting plot.

EFigule Mo. 1 M= E3
File Edit Toolz ‘Window Help

DEEE A A/ 200

1.5

05k

-0.5 1

0] 200 400 GO0 200 1000 1200

As a result the new data file is read and the simulation progresses to the stop
time specified in the Solver page of the Simulation Parameters dialog box.
It is possible to have multiple instances of From File blocks in your Simulink
model.

Since rsim does not place signal data into generated code, it reduces code size
and compile time for systems with large numbers of data points that originate
in From File blocks. The From File block requires the time vector and signals
to be data of type double. If you need to import signal data of a data type other

11-11

171 realTime Workshop Rapid Simulation Target

11-12

than double, use a From Workspace block with the data specified as a
structure.

The workspace data must be in the format

variable.time
variable.signals.values

If you have more than one signal, the format must be

variable.time
variable.signals(1).values
variable.signals(2).values

Specifying a New Output Filename for the Simulation

If you have specified Save to Workspace options (that is, checked Time,
States, Outputs, or Final States check boxes on the Workspace I/O page of the
Simulation Parameters dialog box), the default is to save simulation logging
results to the file model.mat. You can now specify a replacement filename for
subsequent simulations. In the case of the model rsimtfdemo, by typing

Irsimtfdemo

at the MATLAB prompt, a simulation runs and data is normally saved to
rsimtfdemo.mat.

Irsimtfdemo
created rsimtfdemo.mat

You can specify a new output filename for data logging by typing

Irsimtfdemo -o simi.mat

In this case, the set of parameters provided at the time of code generation,
including any From File block data, is run. You can combine a variety of rsim
flags to provide new data, parameters, and output files to your simulation.
Note that the MAT-file containing data for the From File blocks is required.
This differs from the grt operation, which inserts MAT-file data directly into
the generated C code that is then compiled and linked as an executable. In
contrast, rsim allows you to provide new or replacement data sets for each
successive simulation. A MAT-file containing From File or From Workspace
data must be present, if any From File or From Workspace blocks exist in your
model.

Building for the Rapid Simulation Target

Changing Block Parameters for an rsim Simulation

Once you have altered one or more parameter in the Simulink block diagram,
you can extract the parameter vector, rtP, for the entire model. The rtP vector,
along with a model checksum, can then be saved to a MATLAB MAT-file. This
MAT-file can be read in directly by the stand-alone rsim executable, allowing
you to replace the entire parameter vector quickly, for running studies of
variations of parameter values where you are adjusting model parameters or
coefficients or importing new data for use as input signals.

The model checksum provides a safety check to ensure that any parameter
changes are only applied to rsim models that have the same model structure.
If any block is deleted, or a new block added, then when generating a new rtP
vector, the new checksum will no longer match the original checksum. The rsim
executable will detect this incompatibility in parameter vectors and exit to
avoid returning incorrect simulation results. In this case, where model
structure has changed, you must regenerate the code for the model.

The rsim target allows you to alter any model parameter, including parameters
that include side-effects functions. An example of a side-effects function is a

simple Gain block that includes the following parameter entry in a dialog box.

gain value: 2 * a

In general, Real-Time Workshop evaluates side-effects functions prior to
generating code. The generated code for this example retains only one memory
location entry, and the dependence on parameter a is no longer visible in the
generated code. The rsim target overcomes the problem of handling side-effects
functions by replacing the entire parameter structure, rtP. You must create
this new structure by using rsimgetrtp.m. and then save it in a MAT-file. For
the rsimtfdemo example, type

zeta = .2;

myrtp = rsimgetrtp('modelname');
save myparamfile myrtp;

at the MATLAB prompt.

In turn, rsim can read the MAT-file and replace the entire rtP structure
whenever you need to change one or more parameters — without recompiling
the entire model.

For example, assume that you have changed one or more parameters in your
model, generated the new rtP vector, and saved rtP to a new MAT-file called

11-13

171 realTime Workshop Rapid Simulation Target

11-14

myparamfile.mat. In order to run the same rsimtfdemo model and use these
new parameter values, execute the model by typing

!rsimtfdemo -p myparamfile.mat
load rsimtfdemo
plot(rt_yout)

Note that the p is lower-case and represents “Parameter file.”

Specifying a New Stop Time for an rsim Simulation

If a new stop time is not provided, the simulation will run until reaching the
value specified in the Solver page at the time of code generation. You can
specify a new stop time value as follows.

Irsimtfdemo -tf 6.0

In this case, the simulation will run until it reaches 6.0 seconds. At this point
it will stop and log the data according to the MAT-file data logging rules as
described above.

If your model includes From File blocks that also include a time vector in the
first row of the time and signal matrix, the end of the simulation is still
regulated by the original setting in the Solver page of the Simulation
Parameters dialog box or from the -s option as described above. However, if
the simulation time exceeds the end points of the time and signal matrix (that
is, if the final time is greater than the final time value of the data matrix), then
the signal data will be extrapolated out to the final time value as specified
above.

Specifying New Output Filenames for To File Blocks

In much the same way as you can specify a new system output filename, you
can also provide new output filenames for data saved from one or more To File
blocks. This is done by specifying the original filename at the time of code
generation with a new name as follows.

!mymodel -t original.mat=replacement.mat

In this case, assume that the original model wrote data to the output file called
original.mat. Specifying a new filename forces rsim to write to the file
replacement.mat. This technique allows you to avoid over-writing an existing
simulation run.

Building for the Rapid Simulation Target

Simulation Performance

It is not possible to predict accurately the simulation speedup of an rsim
simulation compared to a standard Simulink simulation. Performance will
vary. Larger simulations have achieved speed improvements of up to 10 times
faster than standard Simulink simulations. Some models may not show any
noticeable improvement in simulation speed. The only way to determine
speedup is to time your standard Simulink simulation and then compare its
speed with the associated rsim simulation.

Batch and Monte Carlo Simulations

The rsim target is intended to be used for batch simulations in which
parameters and/or input signals are varied for each new simulation. New
output filenames allow you run new simulations without over-writing prior
simulation results. A simple example of such a set of batch simulations can be
run by creating a .bat file for use under Microsoft Windows.

This simple file for Windows is created with any text editor and executed by
typing the filename, for example, mybatch, where the name of the text file is
mybatch.bat.

rsimtfdemo -f rsimtfdemo.mat=runi.mat -o resultsi.mat -s 10.0
rsimtfdemo -f rsimtfdemo.mat=run2.mat -o results2.mat -s 10.0
rsimtfdemo -f rsimtfdemo.mat=run3.mat -o results3.mat -s 10.0
rsimtfdemo -f rsimtfdemo.mat=run4.mat -o results4.mat -s 10.0

In this case, batch simulations are run using the four sets of input data in files
runi.mat, run2.mat, and so on. The rsim executable saves the data to the
corresponding files specified after the -o option.

The variable names containing simulation results in each of these files are
identical. Therefore, loading consecutive sets of data without renaming the
data once it is in the MATLAB workspace will result in over-writing the prior
workspace variable with new data. If you want to avoid over-writing, you can
copy the result to a new MATLAB variable prior to loading the next set of data.

You can also write M-file scripts to create new signals, and new parameter
structures, as well as to save data and perform batch runs using the bang
command (!).

For additional insight into the rapid simulation target, explore rsimdemo1 and
rsimdemo2, located in matlabroot/toolbox/rtw/rtwdemos/rsimdemos. These

11-15

171 realTime Workshop Rapid Simulation Target

11-16

examples demonstrate how rsim can be called repeatedly within an M-file for
Monte Carlo simulations.

Limitations

The rapid simulation target is subject to the following limitations:

® The rsim target does not support algebraic loops
® The rsim target does not support MATLAB function blocks.

® The rsim target does not support non-inlined M-file, FORTRAN and Ada
S-functions.

® In certain cases, changing block parameters may result in structural
changes to your model that change the model checksum. An example of such
a change would be changing the number of delays in a DSP simulation. In
such cases, you must regenerate the code for the model.

® Variable-step solver support for rsim is not available on HP700, on IBM_RS
platforms, or on PCWIN platforms using the following compiler versions:
= Watcom C/C++ compiler version 10.6

= Borland C/C++ compiler version 5.3.

Targeting Tornado for
Real-Time Applications

Tornado, a target supported by Real-Time Workshop, describes an integrated set of tools for creating
real-time applications to run under theVxWorks operating system, which has many Unix-like
features and runs on a variety of host systems and target processors. This chapter contains the
following topics:

The Tornado Environment (p. 12-2) Overview of the Tornado (VxWorks) Real-Time Target
and the VxWorks Support library

Run-Time Architecture Overview Singletasking and multitasking architecture and
(p. 12-5) host/target communications
Implementation Overview (p. 12-11) Design, implementation, and execution of a VxWorks-

based real-time program using Real-Time Workshop

12 Targeting Tornado for Real-Time Applications

12-2

The Tornado Environment

This chapter describes how to create real-time programs for execution under
VxWorks, which is part of the Tornado environment.

The VxWorks real-time operating system is available from Wind River
Systems, Inc. It provides many UNIX-like features and comes bundled with a
complete set of development tools.

Note Tornado is an integrated environment consisting of VxWorks (a
high-performance real-time operating system), application building tools
(compiler, linker, make, and archiver utilities), and interactive development
tools (editor, debugger, configuration tool, command shell, and browser).

This chapter discusses the run-time architecture of VxWorks-based real-time
programs generated by Real-Time Workshop and provides specific information
on program implementation. Topics covered include:

¢ Configuring device driver blocks and makefile templates

® Building the program

® Downloading the object file to the VxWorks target

¢ Executing the program on the VxWorks target

¢ Using the StethoScope data acquisition and graphical monitoring tool, which
is available as an option with VxWorks. It allows you to access the output of
any block in the model (in the real-time program) and display the data on the
host.

® Using Simulink external mode to change model parameters and download

them to the executing program on the VxWorks target. Note that you cannot
use both external mode and StethoScope at the same time.

Confirming Your Tornado Setup Is Operational

Before beginning, you must install and configure Tornado on your host and

target hardware, as discussed in the Tornado documentation. You should then
run one of the VxWorks demonstration programs to ensure you can boot your
VxWorks target and download object files to it. See the Tornado User’s Guide

The Tornado Environment

for additional information about installation and operation of VxWorks and
Tornado products.

VxWorks Library

Selecting VxWorks Support under the Real-Time Workshop library in the
Simulink Library Browser opens the VxWorks Support library.

[3 simulink Library o sl |
File Edit “iew Help
[= <& Ffind ||

Asynchronous Support: vilib/Asynchronous Support

- Tgh| Simulirk Ao Azpnchionous

- | Communications Blockset | SR Support

----- W Cortrol Systern Toolbox

& W4l DSP Blackset wmuines | |0 Devices
- W] Embedded Target for Matarola MPCSSS |
(- Wb/ Embedded Target for TI CE000 DSP
- W Fived-Poirt Blocksst

(- W] Fuzzy Logic Toolbox

----- W Module Packaging Manager

- Tl Meural Metwork Blockset

----- W RealTime Windows Target

B RealTime Workshop

- DOS Device Drivers

- Interrupt Templates

#-| S-Function Target

- Wewiorks

#-| Aspnchronous Support
- 2| 10 Devices

(- W] S-function demos

- Tl SimPowerSystems

- V| Simulink Extras

..... W Stateflow

- Tgh| #PC Target

Ready i

The blocks discussed in this chapter are located in the Asynchronous Support
library, a sublibrary of the VxWorks Support library:

¢ Interrupt Control

e Rate Transition

12-3

12 Targeting Tornado for Real-Time Applications

® Read Side
¢ Task Synchronization
® Write Side

A second sublibrary, the I/O Devices library, contains support for these drivers:

e Matrix MS-AD12

® Matrix MS-DA12

¢ VME Microsystems VMIVME-3115-110

® Xycom XVME-500/590

® Xycom XVME-505/595

Each of these blocks has online help available through the Help button on the

block’s dialog box. Refer to the Tornado User’s Guide for detailed information
on these blocks.

124

Run-Time Architecture Overview

Run-Time Architecture Overview

In a typical VxWorks-based real-time system, the hardware consists of a UNIX
or PC host running Simulink and Real-Time Workshop, connected to a
VxWorks target CPU via Ethernet. In addition, the target chassis may contain
I/0 boards with A/D and D/A converters to communicate with external
hardware. The following diagram shows the arrangement.

Host VxWorks Target
Simulink Target
Real-Time Workshop CpPU
ADC/DAC
Tornado Compiler Boards
Bthernet
Port
| Ethernet

Figure 12-1: Typical Hardware Setup for a VxWorks Application

The real-time code is compiled on the UNIX or PC host using the cross compiler
supplied with the VxWorks package. The object file (model . 1o) output from the
Real-Time Workshop program builder is downloaded, using WindSh (the
command shell) in Tornado, to the VxWorks target CPU via an Ethernet
connection.

The real-time program executes on the VxWorks target and interfaces with
external hardware via the I/O devices installed on the target.

Parameter Tuning and Monitoring

You can change program parameters from the host and monitor data with
Scope blocks while the program executes using Simulink external mode. You
can also monitor program outputs using the StethoScope data analysis tool.

Using Simulink external mode or StethoScope allows you to change model
parameters in your program, and to analyze the results of these changes, in
real time.

12-5

12 Targeting Tornado for Real-Time Applications

12-6

External Mode

Simulink external mode provides a mechanism to download new parameter
values to the executing program and to monitor signals in your model. In this
mode, the external link MEX-file sends a vector of new parameter values to the
real-time program via the network connection. These new parameter values
are sent to the program whenever you make a parameter change without
requiring a new code generation or build iteration.

You can use the BlockI0OSignals code generation option to monitor signals in
VxWorks. See “Interfacing Parameters and Signals” on page 14-70 for further
information and example code.

The real-time program (executing on the VxWorks target) runs a low priority
task that communicates with the external link MEX-file and accepts the new
parameters as they are passed into the program.

Communication between Simulink and the real-time program is accomplished
using the sockets network API. This implementation requires an Ethernet
network that supports TCP/IP. See Chapter 6, “External Mode” for more
information on external mode.

Changes to the block diagram structure (for example, adding or removing
blocks) require generation of model and execution of the build process.

Configuring VxWorks to Use Sockets

If you want to use Simulink external mode with your VxWorks program, you
must configure your VxWorks kernel to support sockets by including the
INCLUDE_NET_INIT, INCLUDE NET_ SHOW, and INCLUDE_ NETWORK options in your
VxWorks image. For more information on configuring your kernel, see the
VxWorks Programmer’s Guide.

Before using external mode, you must ensure that VxWorks can properly
respond to your host over the network. You can test this by using the host
command

ping <target_name>

Run-Time Architecture Overview

Note You may need to enter a routing table entry into VxWorks if your host
is not on the same local network (subnet) as the VxWorks system. See
routeAdd in the VxWorks Reference Guide for more information.

Configuring Simulink to Use Sockets

Simulink external mode uses a MEX-file to communicate with the VxWorks
system. The MEX-file is

matlabroot/toolbox/rtw/rtw/ext_comm.*

where * is a host-dependent MEX-file extension. See Chapter 6, “External
Mode” for more information.

To use external mode with VxWorks, specify ext_comm as the MEX-file for
external interface in the External Target Interface dialog box (accessed
from the External Mode Control Panel). In the MEX-file arguments field
you must specify the name of the VxWorks target system and, optionally, the
verbosity and TCP port number. Verbosity can be 0 (the default) or 1 if extra
information is desired. The TCP port number ranges from 256 to 65535 (the
default is 17725). If there is a conflict with other software using TCP port
17725, you can change the port that you use by editing the third argument of
the MEX-file for external interface on the External Target Interface dialog
box. The format for the MEX-file arguments field is

‘target_network_name' [verbosity] [TCP port number]

For example, this picture shows the External Target Interface dialog box
configured for a target system called halebopp with default verbosity and the
port assigned to 18000.

|gainl: External Target Interface M= B3
ME-file options

MEfile for external interface:

I ext_comm

ME-file arguments:
| ‘halebopp' 0 15000

()8 | Cancel |

12-7

12 Targeting Tornado for Real-Time Applications

12-8

StethoScope

With StethoScope, you can access the output of any block in the model (in the
real-time program) and display this data on a host. Signals are installed in
StethoScope by the real-time program using the BlockI0OSignals data
structure (See “Interfacing Parameters and Signals” on page 14-70 for
information on BlockI0Signals), or interactively from the WindSh while the
real-time program is running. To use StethoScope interactively, see the
StethoScope User’s Manual.

To use StethoScope you must specify certain options with the build command.
See “Code Generation Options” on page 12-16 for information on these options.

Run-Time Structure

The real-time program executes on the VxWorks target while Simulink and
StethoScope execute on the same or different host workstations. Simulink and
StethoScope require tasks on the VxWorks target to handle communication.

This diagram illustrates the structure of a VxWorks application using
Simulink external mode and StethoScope.

Simulink in
external mode

]

UNIX or PC Host VxWorks Target
StethoScope
tRaten
tRate2
tRatel

Process GUI Events ‘

'

ext_comm

'

tExtern |—»| tBaseRate —»| tScope

A

Ethernet

Figure 12-2: The Run-Time Structure

Run-Time Architecture Overview

The program creates VxWorks tasks to run on the real-time system: one
communicates with Simulink, the others execute the model. StethoScope
creates its own tasks to collect data.

Host Processes

There are two processes running on the host side that communicate with the
real-time program:

¢ Simulink running in external mode. Whenever you change a parameter in
the block diagram, Simulink calls the external link MEX-file to download
any new parameter values to the VxWorks target.

® The StethoScope user interface module. This program communicates with
the StethoScope real-time module running on the VxWorks target to retrieve
model data and plot time histories.

VxWorks Tasks

You can run the real-time program in either singletasking or multitasking
mode. The code for both modes is located in

matlabroot/rtw/c/tornado/rt_main.c

Real-Time Workshop compiles and links rt_main.c with the model code during
the build process.

Singletasking. By default, the model is run as one task, tSingleRate. This may
actually provide the best performance (highest base sample rate) depending on
the model.

The tSingleRate task runs at the base rate of the model and executes all
necessary code for the slower sample rates. Execution of the tSingleRate task
is normally blocked by a call to the VxWorks semTake routine. When a clock
interrupt occurs, the interrupt service routine calls the semGive routine, which
causes the semTake call to return. Once enabled, the tSingleRate task
executes the model code for one time step. The loop then waits at the top by
again calling semTake. For more information about the semTake and semGive
routines, refer to the VxWorks Reference Manual. By default, it runs at a
relatively high priority (30), which allows it to execute without interruption
from background system activity.

12-9

12 Targeting Tornado for Real-Time Applications

12-10

Multitasking. Optionally, the model can run as multiple tasks, one for each
sample rate in the model:

¢ tBaseRate — This task executes the components of the model code run at the
base (highest) sample rate. By default, it runs at a relatively high priority
(30), which allows it to execute without interruption from background
system activity.

® tRaten — The program also spawns a separate task for each additional
sample rate in the system. These additional tasks are named tRate1,
tRate2, ..., tRaten, where n is slowest sample rate in the system. The
priority of each additional task is one lower than its predecessor (tRate1 has
a lower priority than tBaseRate).

Supporting Tasks. If you select external mode and/or StethoScope during the
build process, these tasks will also be created:

¢ tExtern — This task implements the server side of a socket stream
connection that accepts data transferred from Simulink to the real-time
program. In this implementation, tExtern waits for a message to arrive from
Simulink. When a message arrives, tExtern retrieves it and modifies the
specified parameters accordingly.

tExtern runs at a lower priority than tRaten, the lowest priority model task.
The source code for tExtern is located in matlabroot/rtw/c/src/ext_svr.c.

® tScopeDaemon and tScopelLink